首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   774篇
  免费   29篇
  国内免费   43篇
  2024年   1篇
  2023年   8篇
  2022年   13篇
  2021年   11篇
  2020年   12篇
  2019年   21篇
  2018年   18篇
  2017年   6篇
  2016年   11篇
  2015年   13篇
  2014年   45篇
  2013年   63篇
  2012年   51篇
  2011年   55篇
  2010年   38篇
  2009年   31篇
  2008年   43篇
  2007年   45篇
  2006年   31篇
  2005年   42篇
  2004年   9篇
  2003年   18篇
  2002年   13篇
  2001年   13篇
  2000年   7篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1996年   8篇
  1995年   9篇
  1994年   6篇
  1993年   7篇
  1992年   3篇
  1991年   5篇
  1990年   8篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   10篇
  1984年   29篇
  1983年   19篇
  1982年   19篇
  1981年   18篇
  1980年   15篇
  1979年   12篇
  1978年   10篇
  1977年   9篇
  1976年   6篇
  1975年   9篇
  1974年   5篇
排序方式: 共有846条查询结果,搜索用时 31 毫秒
51.
Previous studies have shown that intradermally (ID) injected Brugia pahangi L3s migrate through various tissues and into the lymphatics of gerbils in a distinct pattern. Excretory/secretory products (ES) produced at the time of invasion of B. pahangi are likely to be important in this early migration phase of the parasite life cycle in their rodent host. Hence, early L3 ES was collected from 24 h in vitro cultures of B. pahangi L3 larvae and used in immunization experiments to investigate the effect of immunity to early L3 ES on worm migration, survival and development of B. pahangi. Immunization of gerbils with ES in RIBI adjuvant produced antibodies to numerous ES proteins eliciting a strong humoral response to ES and indirect fluorescent antibody (IFA) assay using anti-ES serum recognized the ES proteins on the surface of B. pahangi L3 larvae. Following ES immunization, gerbils were challenged either ID or intraperitoneally (IP) with 100 L3s of B. pahangi and euthanized at 3 or 106 days post inoculation (DPI). Immunization with early ES slowed the migration of ID inoculated L3 at 3 DPI and significantly altered the locations of adult worms at 106 DPI. Immunization did not induce protection in any treatment group. However, immunized animals had significantly fewer microfilariae per female worm suggesting the antigens in ES are important in microfilariae development or survival in the host. The number of lymphatic granulomas was also significantly reduced in ES immunized animals. It is important to note that microfilariae serve as a nidus in these granulomas. Our results shows immunization with early Brugia malayi L3 ES alters the worm migration, affects circulating microfilarial numbers and reduces lymphatic granulomas associated with B. pahangi infection in gerbils.  相似文献   
52.
Transient receptor potential channel vanilloid type 4 (TRPV4) is a Ca2+- and Mg2+-permeable cation channel that influences oxidative metabolism and insulin sensitivity. The role of TRPV4 in pancreatic beta cells is largely unknown. Here, we characterize the role of TRPV4 in controlling intracellular Ca2+ and insulin secretion in INS-1E beta cells. Osmotic, thermal or pharmacological activation of TRPV4 caused a rapid rise of intracellular Ca2+ and enhanced glucose-stimulated insulin secretion. In the presence of the TRPV channel blocker ruthenium red (RuR) or after suppression of TRPV4 protein production, TRPV4 activators failed to increase [Ca2+]i and insulin secretion in INS-1E cells.  相似文献   
53.
Large procyanidins (more than three subunits) are not absorbed at the gastrointestinal tract but could exert local effects through their interactions with membranes. We previously showed that hexameric procyanidins (Hex), although not entering cells, interact with membranes modulating cell signaling and fate. This paper investigated if Hex, as an example of large procyanidins, can selectively interact with lipid rafts which could in part explain its biological actions. This mechanism was studied in both synthetic membranes (liposomes) and Caco-2 cells. Hex promoted Caco-2 cell membrane rigidification and dehydration, effects that were abolished upon cholesterol depletion with methyl-β-cyclodextrin (MCD). Hex prevented lipid raft structure disruption induced by cholesterol depletion/redistribution by MCD or sodium deoxycholate. Supporting the involvement of cholesterol–Hex bonding in Hex interaction with lipid rafts, the absence of cholesterol markedly decreased the capacity of Hex to prevent deoxycholate- and Triton X-100-mediated disruption of lipid raft-like liposomes. Stressing the functional relevance of this interaction, Hex mitigated lipid raft-associated activation of the extracellular signal-regulated kinases (ERK) 1/2. Results support the capacity of a large procyanidin (Hex) to interact with membrane lipid rafts mainly through Hex–cholesterol bondings. Procyanidin–lipid raft interactions can in part explain the capacity of large procyanidins to modulate cell physiology.  相似文献   
54.
目的改进流感病毒裂解疫苗裂解剂去除工艺,降低残余卵清蛋白和裂解剂含量,提高疫苗质量,降低成本。方法分别将A1、A3和B型流感病毒纯化液用磷酸缓冲液(PB)沉淀法去除裂解剂,经超滤、除菌制备原液,配制6批半成品,其中3批不含硫柳汞,3批含硫柳汞,经全面检定,并观察放置37℃、25℃和2~8℃不同时间的稳定性。结果该疫苗各项指标均符合《中国药典》(2010年版)三部要求,其中卵清蛋白平均为3.83ng/mL,裂解剂平均为57μg/mL,比改进前分别降低97.9%和69%。37℃放置4周、25℃3个月及2-8℃12个月后检定全部合格。结论该工艺步骤简单,去除卵清蛋白和裂解剂效果明显,是进一步提高疫苗质量和降低成本的有效工艺。  相似文献   
55.
Stem cells are needed for an increasing number of scientific applications, including both fundamental research and clinical disease treatment. To meet this rising demand, improved expansion methods to generate high quantities of high quality stem cells must be developed. Unfortunately, the bicarbonate buffering system – which relies upon an elevated CO2 environment – typically used to maintain pH in stem cell cultures introduces several unnecessary limitations in bioreactor systems. In addition to artificially high dissolved CO2 levels negatively affecting cell growth, but more importantly, the need to sparge CO2 into the system complicates the ability to control culture parameters. This control is especially important for stem cells, whose behavior and phenotype is highly sensitive to changes in culture conditions such as dissolved oxygen and pH. As a first step, this study developed a buffer to support expansion of mesenchymal stem cells (MSC) under an atmospheric CO2 environment in static cultures. MSC expanded under atmospheric CO2 with this buffer achieved equivalent growth rates without adaptation compared to those grown in standard conditions and also maintained a stem cell phenotype, self‐renewal properties, and the ability to differentiate into multiple lineages after expansion. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1298–1306, 2013  相似文献   
56.
Ecological and conservation genetics require sampling of organisms in the wild. Appropriate preservation of the collected samples, usually by cryostorage, is key to the quality of the genetic data obtained. Nevertheless, cryopreservation in the field to ensure RNA and DNA stability is not always possible. We compared several nucleic acid preservation solutions appropriate for field sampling and tested them on rat (Rattus rattus) blood, ear and tail tip, liver, brain and muscle. We compared the efficacy of a nucleic acid preservation (NAP) buffer for DNA preservation against 95% ethanol and Longmire buffer, and for RNA preservation against RNAlater (Qiagen) and Longmire buffer, under simulated field conditions. For DNA, the NAP buffer was slightly better than cryopreservation or 95% ethanol, but high molecular weight DNA was preserved in all conditions. The NAP buffer preserved RNA as well as RNAlater. Liver yielded the best RNA and DNA quantity and quality; thus, liver should be the tissue preferentially collected from euthanized animals. We also show that DNA persists in nonpreserved muscle tissue for at least 1 week at ambient temperature, although degradation is noticeable in a matter of hours. When cryopreservation is not possible, the NAP buffer is an economical alternative for RNA preservation at ambient temperature for at least 2 months and DNA preservation for at least 10 months.  相似文献   
57.
58.
Egg activation is a universal process that includes a series of events to allow the fertilized egg to complete meiosis and initiate embryonic development. One aspect of egg activation, conserved across all organisms examined, is a change in the intracellular concentration of calcium (Ca2+) often termed a ''Ca2+ wave''. While the speed and number of oscillations of the Ca2+ wave varies between species, the change in intracellular Ca2+ is key in bringing about essential events for embryonic development. These changes include resumption of the cell cycle, mRNA regulation, cortical granule exocytosis, and rearrangement of the cytoskeleton.In the mature Drosophila egg, activation occurs in the female oviduct prior to fertilization, initiating a series of Ca2+-dependent events. Here we present a protocol for imaging the Ca2+ wave in Drosophila. This approach provides a manipulable model system to interrogate the mechanism of the Ca2+ wave and the downstream changes associated with it.  相似文献   
59.
《Cryobiology》2016,73(3):210-215
Several methods are currently available for selection when conducting sperm cryopreservation, however, these methods might cause different degrees of damage on sperm DNA. The aim of the this study is to compare the effects of storage at −80 °C (in ultra-low temperature refrigerator) and at −196 °C (in liquid nitrogen) on sperm DNA damage, thus to provide a reference for choosing the right method according to different aims. We randomly collected 28 semen samples from college students of Chongqing city. The samples stored at −80 °C were neat semen samples and the samples stored at −196 °C were mixed with additional cryoprotectants. Each sample was subjected to two freezing-thawing cycles, and the sperm DNA damage levels of fresh and thawed samples were measured by single cell gel electrophoresis (SCGE) and sperm chromatin structure assay (SCSA). Both SCGE and SCSA assays showed cryopreservation induced significant damage to sperm DNA. However, storage at −196 °C lead to more severe damage to sperm DNA than storage at −80 °C measured by SCSA. Sperm DNA damage increased simultaneously with the higher frequency of freezing-thawing cycles. We concluded that storage of neat semen samples at −80 °C had milder damage to sperm DNA than storage at −196 °C mixed with cryoprotectants. To avoid additional sperm DNA damage, repeated freezing and thawing should be prevented.  相似文献   
60.
This is the first X-ray crystal structure of the monomeric form of sulfite reductase (SiR) flavoprotein (SiRFP-60) that shows the relationship between its major domains in an extended position not seen before in any homologous diflavin reductases. Small angle neutron scattering confirms this novel domain orientation also occurs in solution. Activity measurements of SiR and SiRFP variants allow us to propose a novel mechanism for electron transfer from the SiRFP reductase subunit to its oxidase metalloenzyme partner that, together, make up the SiR holoenzyme. Specifically, we propose that SiR performs its 6-electron reduction via intramolecular or intermolecular electron transfer. Our model explains both the significance of the stoichiometric mismatch between reductase and oxidase subunits in the holoenzyme and how SiR can handle such a large volume electron reduction reaction that is at the heart of the sulfur bio-geo cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号