首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2935篇
  免费   198篇
  国内免费   117篇
  2024年   3篇
  2023年   49篇
  2022年   61篇
  2021年   66篇
  2020年   75篇
  2019年   84篇
  2018年   94篇
  2017年   86篇
  2016年   94篇
  2015年   88篇
  2014年   130篇
  2013年   181篇
  2012年   126篇
  2011年   133篇
  2010年   86篇
  2009年   122篇
  2008年   155篇
  2007年   165篇
  2006年   145篇
  2005年   104篇
  2004年   112篇
  2003年   96篇
  2002年   107篇
  2001年   64篇
  2000年   58篇
  1999年   59篇
  1998年   84篇
  1997年   52篇
  1996年   51篇
  1995年   53篇
  1994年   42篇
  1993年   42篇
  1992年   37篇
  1991年   26篇
  1990年   24篇
  1989年   24篇
  1988年   23篇
  1987年   16篇
  1986年   15篇
  1985年   41篇
  1984年   46篇
  1983年   31篇
  1982年   36篇
  1981年   21篇
  1980年   17篇
  1979年   7篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1974年   4篇
排序方式: 共有3250条查询结果,搜索用时 125 毫秒
51.
Levels of immunoreactive pro-opiomelanocortin (POMC) peptides (N- and C-terminal ACTH, N- and C-terminal LPH and α-MSH) have been measured in pituitary extracts from human fetuses of 12–22 weeks gestation. The levels of ACTH were 30–200 times higher than α-MSH in all fetuses studied. Sephadex G-75 and G-25 chromatography of 8 extracts showed peaks of 34 kilodaltons (K) POMC, 22K ACTH, β-LPH, γ-LPH, β-endorphin, approximately 8K ACTH, 1–39 ACTH, α-MSH and CLIP. The 8K and 22K forms of ACTH are both partly glycosylated.In vitro culture of pituitaries from 2 fetuses (22 and 26 weeks gestation) gave a detectable basal output of ACTH but not of α-MSH. Stimulation of these pituitary cells with human fetal and rat hypothalamic extracts and with synthetic ovine CRF-41 produced a significant increase in ACTH release, and either small or undetectable amounts of α-MSH.These results demonstrate the presence of POMC-related peptides in early gestation human fetal pituitaries and suggest that ACTH, and not α-MSH, is the major corticotrophic hormone at this stage of gestation.  相似文献   
52.
J M Pages 《Biochimie》1983,65(10):531-541
Bacterial protein synthesis takes place in the cytoplasm, thus periplasmic and outer membrane proteins pass through the cytoplasmic membrane during their dispatch to the cell envelope. The exported proteins are synthesized as precursor that contains an extra amino-terminal sequence of amino-acids. This sequence, termed "signal sequence", is essential for transport of the envelope proteins through the inner membrane and is cleaved during the exportation process. Various hypotheses for the mechanism have been presented, and it is likely that no signal model will be suitable to the export of all cell envelope proteins. This review is focused on the relationship between the cytoplasmic membrane and the precursor form. The physiological state of the membrane - fluidity, membrane potential for instance - is the strategic requirement of exportation process. Precursors can be accumulated in whole cells with various treatments which alter the cytoplasmic membrane. This inhibition of processing is obtained by modification of unsaturated to saturated fatty acids ratio or with phenylethyl alcohol which perturbs the membrane fluidity, with uncoupler agents such as carbonyl cyanide m-chlorophenyl hydrazone which dissipate the proton motive force, or with hybrid proteins which get jamming in the membrane. However, little is known about the early steps of translocation process across the cytoplasmic membrane ; for instance, it is not clear yet whether energy is required for either or both of the first interaction membrane-precursor and the crossing through the membrane. Several studies have recently shown the presence of exportation sites and of proteins which might play a prominent role in the export process, but the mechanism of discrimination between outer membrane proteins and periplasmic proteins is unknown. Considerable work has been done by genetic or biochemical methods and we have now the first lights of the expert mechanism.  相似文献   
53.
Summary In the mammalian pituitary formaldehyde-ozone treatment induces strong fluorescence in the cells of the pars intermedia and moderate to strong fluorescence in numerous cells of the pars distalis. Maximum excitation is at 370–375 nm and maximum emission at 495–505 nm. The properties of the cellular fluorescence are indistinguishable from those of tryptamine or peptides with NH2-terminal tryptophan. From chemical analysis such peptides seem to occur abundantly in the mammalian pituitary. The concentration of these peptides agrees very well with the number and fluorescence intensity of the cells in all species studied. Furthermore, the tryptophyl peptides in the various parts of the pig pituitary have a distribution quite parallel to that of the fluorescent cells. As we have failed to detect tryptamine in the pituitary, we conclude that the formaldehyde-ozone-induced fluorescence in the adenohypophysis reflects the presence of tryptophyl peptides.This study was supported by grants from the Swedish Medical Research Council (04X-1007; 04X-3764), the Ford Foundation, Harald and Greta Jeanssons stiftelse and Riksföreningen mot Cancer (660-K73-01X).For brevity occasionally referred to as tryptophyl peptides.  相似文献   
54.
Summary The changes in Na current during development were studied in the dorsal root ganglion (DRG) cells using the whole-cell patch-clamp technique. Cells obtained from rats 1–3 and 5–8 days after birth were cultured and their Na currents were compared. On top of the two types of Na currents reported in these cells (fast-FA current and slow-S current) a new fast current was found (FN). The main characteristics of the three currents are: (i) The voltages of activation are –37, –36, and –23 mV for the FN, FA and S currents, respectively. (ii) The activation and inactivation kinetics of FN and FA currents are about five times faster than those of the S current. (iii) The voltages at which inactivation reaches 50% are –139, –75 and –23 mV for the FN, FA and S currents, respectively.The kinetics and voltage-dependent parameters of the three currents and their density do not change during the first eight days after birth. However, their relative frequency in the cells changes. In the 1–3 day-old rats the precent of cells with S, FA, and mixed S+FN currents is 22, 18, and 60% of the cells, respectively. In the 5–8 day-old, the percent of cells with S, FA, and FN+S is 10, 66 and 22%. The relative increase in the frequency of cells with FA current during development can contribute to the ease of action potential generation compared with cells with FN currents, which are almost completely inactivated under physiological conditions. The predominance of FA cells also results in a significant decrease in the relative frequency of cells with the high-threshold, slow current.Antibodies directed against a part of the S4 region of internal repeat I of the sodium channel (C 1 + , amino acids 210–223, eel channel numbering) were found to shift the voltage dependence of FA current inactivation (but not of FN or S currents) to more negative potentials. The effect was found only when the antibodies were applied externally. The results suggest that FN, FA and S types of Na currents are generated by channels, which are different in the topography of the C 1 + region in the membrane.  相似文献   
55.
Most anti-nicotinic acetylcholine receptor (AChR) antibodies in myasthenia gravis are directed against an immunodominant epitope or epitopes [main immunogenic region (MIR)] on the AChR alpha-subunit. Thirty-two synthetic peptides, corresponding to the complete Torpedo alpha-subunit sequence and to a segment of human muscle alpha-subunit, were used to map the epitopes for 11 monoclonal antibodies (mAbs) directed against the Torpedo and/or the human MIR and for a panel of anti-AChR mAbs directed against epitopes on the alpha-subunit other than the MIR. A main constituent loop of the MIR was localized within residues alpha 67-76. Residues 70 and 75, which are different in the Torpedo and human alpha-subunits, seem to be crucial in determining the binding profile for several mAbs whose binding to the peptides correlated very well with their binding pattern to native Torpedo and human AChRs. This strongly supports the identification of the peptide loop alpha 67-76 as the actual location of the MIR on the intact AChR molecule. Residues 75 and 76 were necessary for binding of some mAbs and irrelevant for others, in agreement with earlier suggestions that the MIR comprises overlapping epitopes. Structural predictions for the sequence segment alpha 67-76 indicate that this segment has a relatively high segmental mobility and a very strong turning potential centered around residues 68-71. The most stable structure predicted for this segment, in both the Torpedo and human alpha-subunits, is a hairpin loop, whose apex is a type I beta-turn and whose arms are beta-strands. This loop is highly hydrophilic, and its apex is negatively charged. All these structural properties have been proposed as characteristic of antibody binding sites. We also localized the epitopes for mAbs against non-MIR regions. Among these, the epitope for a monoclonal antibody (mAb 13) that noncompetitively inhibits channel function was localized within residues alpha 331-351.  相似文献   
56.
Abstract: P19 is a C3H mouse-derived line of multipotent embryonic carcinoma cells that differentiate into neural cells. P19 cell clones overexpressing the three major forms of β-amyloid precursor protein from their cDNA constructs were established. Unlike a previous study in which P19-derived neurons had a limited α-secretase activity, all of these clones produced significant amounts of secreted β-amyloid precursor protein. When treated with retinoic acid, these transformed lines differentiated into neurons and survived better than did nontransformed parental P19 cells. Furthermore, P19-derived neurons survived better in medium conditioned by the transformed P19 line, and survival was reduced by immunoabsorption with an antibody to β-amyloid precursor protein. These results suggest neurotrophic effects of secreted β-amyloid precursor protein and contrast with a previous report in which overexpression of a full-length cDNA for β-amyloid precursor protein led to degeneration of P19-derived neurons. Western blot analysis suggested that this difference might result from different levels of expression of putative neurotoxic C-terminal fragments of β-amyloid precursor protein; moreover, P19-derived neurons differ from P19 stem cells in the processing of these C-terminal fragments.  相似文献   
57.
This study examined the localized action of neuropeptide Y (NPY) on monoamine transmitter activity in the hypothalamus of the unrestrained rat as this peptide induced hypothermia, spontaneous feeding or both responses simultaneously. A guide tube was implanted in the anterior hypothalamic pre-optic area (AH/POA) of Sprague-Dawley rats. Then either control CSF vehicle or NPY in a dose of either 100 ng/μl or 250 ng/μl was perfused by push-pull cannulae in this structure in the fully sated, normothermic rat. Successive perfusions were carried out at a rate of 20 μl/min for 6.0 min with an interval of 6.0 min elapsing between each. Samples of perfusate were assayed by HPLC for their levels of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their respective metabolites. Whereas control CSF was without effect on body temperature (Tb) or feeding, repeated perfusions of NPY over 3.0 hr caused dose—dependent eating from 4 to 39 g of food, hypothermia of 0.9 to 2.3°C or both responses concurrently. As the rats consumed 11–39 g of food, the efflux of NE, MHPG, DOPAC and 5-HT was enhanced significantly, whereas during the fall in Tb the efflux of NE, DOPAC and 5-HIAA from the AH/POA increased. When the Tb of the rat declined simultaneously with eating behavior, the levels in perfusate of DOPAC and HVA increased significantly while MHPG declined. During perfusion of the AH/POA with NPY the turnover of NE declined while DA and 5-HT turnover increased during hypothermia alone or when accompanied by feeding. These results demonstrate that the sustained elevation in NPY within the AH/POA causes a selective alteration in the activity of the neurotransmitters implicated in thermoregulation, satiety and hunger. These findings suggest that both DA and NE comprise intermediary factors facilitating the action of NPY on neurons involved in thermoregulatory and ingestive processes. The local activity of NPY on hypothalamic neurons apparently shifts the functional balance of serotonergic and catecholaminergic neurons now thought to play a primary role in the control of energy metabolism and caloric intake.  相似文献   
58.
In a previous paper we demonstrated that the short-range compact regions in atrial natriuretic factor (-hANF) predicted by the average distance map (ADM) correspond to its active sites [Kikuchi,J. Protein Chem.11, 579–581 (1992)]. In the present paper we apply the same method to other bioactive peptides and peptidic enzyme inhibitors. We again observe that active sites in each peptide are contained in short-range compact regions predicted by the ADM for the peptide. This demonstrates that the ADM method predicts the possible location of active sites in biologically active peptides in general. The possibility of practical application of the present method to rational drug design is also discussed.  相似文献   
59.
The changes in the levels of microtubule-associated proteins (MAPs) during advanced embryonic stages, neonatal and adult organisms reflect the importance of these cytoskeletal proteins in relation to the morphogenesis of the central nervous system. MAP-1B is found in prenatal brains and it appears to have the highests levels in neonatal rat brains, being a developmentally-regulated protein. In this research, a fast procedure to isolate MAP-1B, as well as MAP-2 and MAP-3 from neonatal rat brains was designed, based on the differential capacity of poly L-aspartic acid to release MAPs during temperature-dependent cycles of microtubule assembly in the absence of taxol. The high molecular weight MAP-1B was recovered in the warm supernatants after microtubular protein polymerization in the presence of low concentrations of polyaspartic acid. Instead, MAP-2 and a 180 kDa protein with characteristics of MAP-3 remained associated to the polymer after the assembly. Further purification of MAP-1B was attained after phosphocellulose chromatography. Isolation of MAP-2 isoforms together with MAP-3 was achieved on the basis of their selective interactions with calmodulin-agarose affinity columns. In addition, MAP-2 and MAP-3 were also purified on the basis of their capacities to interact with the tubulin peptide -II (422–434) derivatized on an Affigel matrix. However, MAP-1B did not interact with the -II tubulin fragment, but it showed interaction with the Affigel-conjugated -I (431–444) tubulin peptide. The different MAPs componentes were characterized by western blots using specific monoclonal antibodies. A salient feature of neonatal rat brain MAP-3 was its interactions with site-directed antibodies that recognize binding epitopes on the repetitive sequences of tau and MAP-2. However, these site-specific antibodies did not interact with MAP-1B from the neonatal rat brain tissue.Abbreviations PAA poly (L-aspartic acid) - HMW-MAPs high molecular weight microtubule associated proteins  相似文献   
60.
Serotonin- and ten peptide-immunoreactive (IR) cell types were identified in the digestive tract of sea bass (Dicentrarchus labrax L.) larvae of four morphofunctional phases ranging in age from hatching to 61 days. The sequence of appearance and location of endocrine cells during ontogenetic development of the larvae was determined. The differentiation of endocrine cells followed a distal-proximal gradient in the gut which paralleled the morphofunctional differentiation. Serotonin-IR cells were identified in the last portion of the digestive tract from phase I onwards and in the gastric region from phase III, before these regions were morphofunctionally differentiated; met-enkephalin-IR cells were identified from phase II onwards in both the differentiated rectum and the undifferentiated intestine; cholecystokinin (CCK)- and synthetic human gastrin-34-IR cells were located only in the intestine and first found in the undifferentiated intestine of phase II; human gastrin-17-, peptide YY (PYY)- and neuropeptide Y (NPY)-IR cells appeared in the intestine from phase II and in stomach in phase IV, when it showed gastric glands; pancreatic polypeptide (PP)- and glucagon-IR cells were observed in both intestine and stomach, but insulin- and somatostatin-IR cells only in stomach, from phase III, during which the intestine but not the stomach was differentiated. PP- and PYY-, PP- and glucagon-, and PYY- and glucagon-like immunoreactivities coexisted from their first appearance in some cells of the gut.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号