首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   17篇
  国内免费   76篇
  2024年   1篇
  2023年   7篇
  2022年   10篇
  2021年   11篇
  2020年   10篇
  2019年   6篇
  2018年   6篇
  2017年   8篇
  2016年   7篇
  2015年   8篇
  2014年   15篇
  2013年   18篇
  2012年   5篇
  2011年   13篇
  2010年   9篇
  2009年   27篇
  2008年   16篇
  2007年   15篇
  2006年   20篇
  2005年   23篇
  2004年   18篇
  2003年   22篇
  2002年   20篇
  2001年   10篇
  2000年   7篇
  1999年   10篇
  1998年   12篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   6篇
  1993年   8篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   6篇
  1988年   6篇
  1986年   3篇
  1985年   7篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
排序方式: 共有413条查询结果,搜索用时 15 毫秒
31.
Hamm S  Bleton J  Connan J  Tchapla A 《Phytochemistry》2005,66(12):1499-1514
Six different olibanum samples with certified botanical origin were analyzed by headspace SPME-GC/MS in order to define their mono-, sesqui- and diterpenic composition, as pertinent criteria of identification. Boswellia carteri and Boswellia sacra olibanum have quite similar chemical composition, with isoincensole acetate as the main diterpenic biomarker. Although Boswellia serrata olibanum also exhibits this biomarker, the presence of methylchavicol, methyleugenol and an unidentified oxygenated sesquiterpene distinguishes B. serrata olibanum from the two other species. The characteristic chemical compounds of Boswellia papyrifera are the diterpenic biomarkers incensole and its oxide and acetate derivatives, n-octanol and n-octyl acetate. Boswellia frereana olibanum is devoid of diterpenes of the incensole family but contains a high amount of many dimers of alpha-phellandrene. The chemical composition of olibanum, which is demonstrated to be different for each Boswellia species allowed the determination of the taxonomic origin of frankincense samples purchased on various markets in East Africa, in the Near East and in Yemen. Moreover, terpenic fingerprints allowed the botanical origin of olibanum used in traditional incense mixtures to be identified. Furthermore, this study gave us the opportunity to assign a botanical origin to an archaeological frankincense sample.  相似文献   
32.
Kumar P  Khan Z 《Carbohydrate research》2005,340(7):1365-1371
In the present work, the oxidative degradation of gum arabic by colloidal manganese dioxide (MnO2) was carried out. Monitoring the disappearance of the MnO2 spectrophotometrically at 375 nm was used to follow the kinetics. The oxidation obeyed fractional-order kinetics with respect to the [gum arabic]. Effect of various experimental parameters such as the initial colloidal [MnO2], [HClO4], temperature, and complexing agents (P2O7(4-), F-, and Mn2+) for the oxidation of gum arabic was studied. The reaction was acid catalyzed. Addition of P2O(7)4-, F-, and Mn2+ ions enhances the rate of oxidation significantly. Gum arabic adsorbs onto the surface of the colloidal MnO2 through the equatorial -OH groups of the rhamnose moiety, and the complex breaks down into products. The Arrhenius equation was valid for the oxidation kinetics between 40 and 60 degrees C. To explain the observed kinetic results, a suitable mechanism and rate law for the reaction taking place at the surface of the colloidal particle has been proposed. The reducing nature of gum arabic is found be due to the presence of -OH group in the skeleton.  相似文献   
33.
The potential use of alpha-cyclodextrin and its hydrophilic alpha-cyclodextrin derivatives (alpha-CyDs) as antagonists against lipopolysaccharide (LPS), which stimulates the nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) production as well as nuclear factor-kappaB (NF-kappaB) activation in macrophages was examined. Of three alpha-CyDs used in the present study, 2,6-di-O-methyl-alpha-CyD (DM-alpha-CyD) had greater inhibitory activity than did the other CyDs against NO and TNF-alpha production through an impairment of gene expression in macrophage cell lines and primary macrophages stimulated with LPS and lipid A in a concentration-dependent manner. Concomitantly, DM-alpha-CyD inhibited NF-kappaB translocation into nucleus. These inhibitory effects of DM-alpha-CyD could be attributed to the release of CD14 from lipid rafts caused by an efflux of phospholipids, but not cholesterol. These results suggest that DM-alpha-CyD may have promise as a potent and unique antagonist for excess activation of macrophages stimulated with LPS.  相似文献   
34.
玉米幼苗根系分泌物对芘污染的响应   总被引:1,自引:0,他引:1  
许超  林小方  夏北成 《生态学报》2010,30(12):3280-3288
根际袋土培试验研究了玉米幼苗根系分泌物中的可溶性糖、低分子量有机酸和氨基酸对不同芘污染水平(50、200、800mgkg-1,记为T1、T2、T3)的响应差异,探讨芘胁迫下植物根系的生理生态效应。结果表明,较低浓度芘可适当地刺激玉米的生长,高浓度芘处理抑制了玉米的生长,并且抑制作用随芘处理浓度的提高而增强;芘对玉米根系的影响要大于对茎叶的影响。芘胁迫下促进了根系分泌可溶性糖、低分子量有机酸和氨基酸增多。T1、T2和T3处理根系分泌物中可溶性糖、低分子量有机酸、氨基酸含量分别是T0处理的1.14、1.81、1.35倍,1.24、4.31、2.94倍,1.58、5.56、5.40倍。不同芘污染水平下,乙酸分泌量表现为T2T3T1,酒石酸和柠檬酸分泌量表现为T3T2T1,草酸分泌量表现为T3≈T2T1。芘处理对根系分泌氨基酸种类的影响不大,而对各氨基酸分泌量的变化幅度影响较大;芘胁迫处理对于18种常见氨基酸组分的分泌量的影响各不相同。不同芘污染水平下,天门冬氨酸、丝氨酸和丙氨酸分泌量表现为T3T2T1,苏氨酸、谷氨酸、脯氨酸、甘氨酸、胱氨酸、缬氨酸、甲硫氨酸、异亮氨酸、亮氨酸、酪氨酸、苯丙氨酸、赖氨酸、组氨酸、γ-氨基丁酸、鸟氨酸分泌量表现为T2T3T1。  相似文献   
35.
外来入侵植物小飞蓬化感物质的释放途径   总被引:5,自引:1,他引:4  
在室内以滤纸为载体用离体生测方法测定了小飞蓬(Conyza canadesiL.)全株水浸提物、茎叶淋溶物、根系分泌物及残体土壤分解物对萝卜(Raphanussativus L.)、黄瓜(Cucumis sativus L.)、马唐(Digitarias anguinalis(L.)Scop.)油菜(Brassica campestris L.)和小麦(Triticuma estivum L.)的化感效应,同时在温室内以土壤为载体通过盆栽植物浇灌的方法测定了小飞蓬茎叶淋溶物和根系分泌物对盆栽植物生长的影响。室内生测实验结果表明,小飞蓬全株水浸提物对5种受体种子的萌发和幼苗生长均有较强的抑制作用;根系分泌物、茎叶淋溶物和残体土壤分解物对受体种子的生长抑制作用不同,根系分泌物的活性高于茎叶淋溶物和残体土壤分解物。温室盆栽实验结果也表明,小飞蓬根系分泌物对受体生长的影响高于茎叶淋溶物。这些结果说明根系分泌是小飞蓬化感物质释放的主要途径之一。  相似文献   
36.
为探讨温室蔬菜CO2施肥的根际效应,以黄瓜幼苗为试材,研究了CO2施肥(上午施肥/上、下午施肥;施肥浓度/对照浓度(950±50)/(350±50)μmol/molCO2)对根系生长及分泌物和伤流液组成的影响。结果表明,CO2施肥明显促进黄瓜幼苗根系发育,根系生物量显著增加;单株根系分泌物中氨基酸、糖、有机酸和酚酸总量增加,但单位鲜重根系分泌量却呈现增幅减少、无变化甚至降低趋势,说明单株分泌量增加主要由根系生长量的增加所引起。CO2施肥促进幼苗对养分的吸收,伤流液中矿质元素、ZT浓度增加,但GA、ABA和IAA浓度降低;与上午CO2施肥相比,上、下午均CO2施肥的效果更明显。CO2施肥促进了黄瓜幼苗根系发育及其代谢活性,为地上部的旺盛生长创造了条件。  相似文献   
37.
The objective of this study was to improve induction of embryogenesis in wheat microspore culture in order to obtain a high number of regenerable embryos. The arabinogalactan (AG) Larcoll and the arabinogalactan-protein (AGP) from gum arabic were tested on two spring genotypes to see if they could increase microspore viability and induce embryogenesis in the microspore culture. Adding Larcoll significantly decreased microspore mortality in both genotypes regardless of the presence or absence of ovaries in the culture. Similarly, gum arabic had a strong effect on the number of embryos produced and regenerated green plants. In fact, by using only gum arabic we were able to obtain green plants from wheat microspore cultures without the presence of ovaries. In addition to preventing a high mortality rate of the cells, our results show that the induction of embryogenesis in wheat microspore cultures is strongly affected by the use of both AG or AGP.An erratum to this article can be found at  相似文献   
38.
BACKGROUND: Roots growing in soil encounter physical, chemical and biological environments that influence their rhizospheres and affect plant growth. Exudates from roots can stimulate or inhibit soil organisms that may release nutrients, infect the root, or modify plant growth via signals. These rhizosphere processes are poorly understood in field conditions. SCOPE AND AIMS: We characterize roots and their rhizospheres and rates of growth in units of distance and time so that interactions with soil organisms can be better understood in field conditions. We review: (1) distances between components of the soil, including dead roots remnant from previous plants, and the distances between new roots, their rhizospheres and soil components; (2) characteristic times (distance(2)/diffusivity) for solutes to travel distances between roots and responsive soil organisms; (3) rates of movement and growth of soil organisms; (4) rates of extension of roots, and how these relate to the rates of anatomical and biochemical ageing of root tissues and the development of the rhizosphere within the soil profile; and (5) numbers of micro-organisms in the rhizosphere and the dependence on the site of attachment to the growing tip. We consider temporal and spatial variation within the rhizosphere to understand the distribution of bacteria and fungi on roots in hard, unploughed soil, and the activities of organisms in the overlapping rhizospheres of living and dead roots clustered in gaps in most field soils. CONCLUSIONS: Rhizosphere distances, characteristic times for solute diffusion, and rates of root and organism growth must be considered to understand rhizosphere development. Many values used in our analysis were estimates. The paucity of reliable data underlines the rudimentary state of our knowledge of root-organism interactions in the field.  相似文献   
39.
Root–soil interactions can strongly influence the soil solution chemistry in the rhizosphere. In the present study we propose a modification of the classical rhizobox/micro suction cup system to make it suitable for the collection and analysis of organic acids in the rhizosphere. In order to show the potential of the method, we tested the modified system with Lupinus albus L. as a model plant known to exude large amounts of citrate. The suction cups were installed through the transparent front plate of the rhizoboxes just after the emergence of cluster roots in order to allow optimal localized collection of soil solution. A small dead-volume allowed almost immediate stabilisation with formaldehyde of the sampled soil solutions in the collection container to prevent microbial degradation. The concentrations of organic acids were significantly larger in the rhizosphere soil solution of active cluster roots of Lupinus albus L. than in the bulk soil solution (about 400 μM of citrate versus <0.05 μM). We were able to follow the exudation process in-situ, which occurred during 2–3 days. Also the concentrations of other organic acids and inorganic anions differed between the bulk soil and the rhizosphere of cluster roots, normal roots, and nodules.  相似文献   
40.
Two key plant adaptations for phosphorus (P) acquisition are carboxylate exudation into the rhizosphere and mycorrhizal symbioses. These target different soil P resources, presumably with different plant carbon costs. We examined the effect of inoculation with arbuscular mycorrhizal fungi (AMF) on amount of rhizosphere carboxylates and plant P uptake for 10 species of low‐P adapted Kennedia grown for 23 weeks in low‐P sand. Inoculation decreased carboxylates in some species (up to 50%), decreased plant dry weight (21%) and increased plant P content (23%). There was a positive logarithmic relationship between plant P content and the amount of rhizosphere citric acid for inoculated and uninoculated plants. Causality was indicated by experiments using sand where little citric acid was lost from the soil solution over 2 h and citric acid at low concentrations desorbed P into the soil solution. Senesced leaf P concentration was often low and P‐resorption efficiencies reached >90%. In conclusion, we propose that mycorrhizally mediated resource partitioning occurred because inoculation reduced rhizosphere carboxylates, but increased plant P uptake. Hence, presumably, the proportion of plant P acquired from strongly sorbed sources decreased with inoculation, while the proportion from labile inorganic P increased. Implications for plant fitness under field conditions now require investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号