首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3028篇
  免费   150篇
  国内免费   79篇
  2023年   62篇
  2022年   60篇
  2021年   93篇
  2020年   59篇
  2019年   90篇
  2018年   88篇
  2017年   57篇
  2016年   46篇
  2015年   77篇
  2014年   88篇
  2013年   171篇
  2012年   99篇
  2011年   93篇
  2010年   65篇
  2009年   102篇
  2008年   117篇
  2007年   113篇
  2006年   115篇
  2005年   110篇
  2004年   121篇
  2003年   96篇
  2002年   108篇
  2001年   93篇
  2000年   87篇
  1999年   68篇
  1998年   80篇
  1997年   80篇
  1996年   79篇
  1995年   70篇
  1994年   50篇
  1993年   63篇
  1992年   55篇
  1991年   46篇
  1990年   38篇
  1989年   40篇
  1988年   45篇
  1987年   30篇
  1986年   35篇
  1985年   49篇
  1984年   43篇
  1983年   42篇
  1982年   25篇
  1981年   14篇
  1980年   14篇
  1979年   12篇
  1978年   11篇
  1977年   12篇
  1976年   17篇
  1972年   5篇
  1971年   9篇
排序方式: 共有3257条查询结果,搜索用时 46 毫秒
901.
The suprachiasmatic nucleus (SCN) of the hypothalamus is implicated in the timing of a wide variety of circadian processes. Since the environmental light-dark cycle is the main zeitgeber for many of the rhythms, photic information may have a synchronizing effect on the endogenous clock of the SCN by inducing periodic changes in the biological activity of certain groups of neurons. By studying the brains obtained at autopsy of human subjects, marked diurnal oscillations were observed in the neuropeptide content of the SCN. Vasopressin, for example, one of the most abundant peptides in the human SCN, exhibited a diurnal rhythm, with low values at night and peak values during the early morning. However, with advancing age, these diurnal fluctuations deteriorated, leading to a disrupted cycle with a reduced amplitude in elderly people. These findings suggest that the synthesis of some peptides in the human SCN exhibits an endogenous circadian rhythmicity, and that the temporal organization of these rhythms becomes progressively disturbed in senescence. (Chronobiology International, 17(3), 245-259, 2000)  相似文献   
902.
Using multiple-site optical recording with the voltage-sensitive dye, NK2761, we found that vagus nerve stimulation in the embryonic chick brainstem elicits postsynaptic responses in an undefined region on the contralateral side. The characteristics of the contralateral optical signals suggested that they correspond to the monosynaptic response that is related to the vagal afferent fibers. The location of the contralateral response was different from the vagal motor nucleus (the dorsal motor nucleus of the vagus nerve) and sensory nucleus (the nucleus of the tractus solitarius), and other brainstem nuclei that receive primary vagal projection. These results show that the vagus nerve innervates and makes functional synaptic connections in a previously unreported region of the brainstem, and suggest that sensory information processing mediated by the vagus nerve is more complex than expected.  相似文献   
903.
Our previous studies have suggested that dopamine and noradrenaline may be coreleased from noradrenergic nerve terminals in the cerebral cortex. To further clarify this issue, the effect of electrical stimulation of the locus coeruleus on extracellular noradrenaline, dopamine and DOPAC in the medial prefrontal cortex, parietal cortex and caudate nucleus was analysed by microdialysis in freely moving rats. Stimulation of the locus coeruleus for 20 min with evenly spaced pulses at 1 Hz failed to modify cortical catecholamines and DOPAC levels. Stimulation with bursts of pulses at 12 and 24 Hz increased, in a frequency-related manner, not only noradrenaline but also dopamine and DOPAC in the two cortices. In both cortices noradrenaline returned to baseline within 20 min of stimulation, irrespective of the stimulation frequency, whereas dopamine returned to normal within 20 and 60 min in the medial prefrontal cortex and within 60 and 80 min in the parietal cortex after 12 and 24 Hz stimulation, respectively. DOPAC remained elevated throughout the experimental period. Phasic stimulation of the locus coeruleus at 12 Hz increased noradrenaline in the caudate nucleus as in the cerebral cortices but was totally ineffective on dopamine and DOPAC. Tetrodotoxin perfusion into the medial prefrontal cortex dramatically reduced noradrenaline and dopamine levels and suppressed the effect of electrical stimulation. These results indicate that electrical stimulation-induced increase of dopamine is a nerve impulse exocytotic process and suggest that cortical dopamine and noradrenaline may be coreleased from noradrenergic terminals.  相似文献   
904.
Acute cocaine administration increases extraneuronal dopamine and Thr34 phosphorylation of dopamine- and cAMP-regulated phosphoprotein (M(r) 32 kDa; DARPP-32) in striatal and cortical areas. Novel palatable food consumption increases extraneuronal dopamine in the same areas. We examined the DARPP-32 phosphorylation pattern in food non-deprived rats at different times after vanilla sugar consumption. The phosphorylation state of DARPP-32 and two cAMP-dependent protein kinase (PKA) substrates, GluR1 and NR1, were detected by immunoblotting. Thirty to 45 min after vanilla sugar consumption, phospho-Thr34 DARPP-32, GluR1 and NR1 levels increased in the nucleus accumbens, and phospho-Thr75 DARPP-32 levels decreased. At 60 min, all parameters returned to baseline values. However, 2 and 3 h after vanilla sugar consumption, phospho-Thr34 DARPP-32 levels decreased, while phospho-Thr75 DARPP-32 levels increased. In contrast to the pattern observed in the NAcS, no delayed changes in DARPP-32 phosphorylation were observed in the mPFC. Both early and delayed DARPP-32, GluR1 and NR1 phosphorylation changes were prevented by a dopamine D1 receptor antagonist administration. The delayed modifications in nucleus accumbens DARPP-32 phosphorylation were prevented by an mGluR5 antagonist administration. The mesolimbic dopaminergic response to an unfamiliar taste is correlated to a gustatory memory trace development, and the observed changes in DARPP-32 phosphorylation may be part of this process.  相似文献   
905.
The adenosine A(2A) receptor (A(2A)R) has been demonstrated to play a crucial role in the regulation of the sleep process. However, the molecular mechanism of the A(2A)R-mediated sleep remains to be elucidated. Here we used electroencephalogram and electromyogram recordings coupled with in vivo microdialysis to investigate the effects of an A(2A)R agonist, CGS21680, on sleep and on the release of histamine and GABA in the brain. In freely moving rats, CGS21680 applied to the subarachnoid space underlying the rostral basal forebrain significantly promoted sleep and inhibited histamine release in the frontal cortex. The histamine release was negatively correlated with the amount of non-rapid eye movement sleep (r = - 0.652). In urethane-anesthetized rats, CGS21680 inhibited histamine release in both the frontal cortex and medial pre-optic area in a dose-dependent manner, and increased GABA release specifically in the histaminergic tuberomammillary nucleus but not in the frontal cortex. Moreover, the CGS21680-induced inhibition of histamine release was antagonized by perfusion of the tuberomammillary nucleus with a GABA(A) antagonist, picrotoxin. These results suggest that the A(2A)R agonist induced sleep by inhibiting the histaminergic system through increasing GABA release in the tuberomammillary nucleus.  相似文献   
906.
907.
The effect of cervical vagus nerve stimulation, gastric distension and CCK-8S administration was studied on the activity of 120 neurons located in the nucleus tractus solitarius (NTS) of anesthetized newborn lambs. One hundred cells responded to the three different inputs.The distribution of the cells in the NTS was from 3 mm rostral to 3 mm caudal to the obex, the major responsive cells being located at the level of the obex. Neurons were either excited or inhibited by gastric distension and CCK-8S, and the responses to these two stimuli were always in the same direction. A small number of cells responded to gastric distension and CCK-8S but not to vagus nerve stimulation.Injection of the CCK-A receptor antagonist 2-NAP abolished both the responses to CCK-8S and to gastric distension. The results are consistent with the idea that CCK-8S acts directly on vagal mechanoreceptive endings in the gastric corpus close to duodenum.These results from lambs may reflect the pathway by which gastric distension and peripheral CCK-8S modulate NTS cells activity during colostrum ingestion, which could in turn activate structures related to learning and memory processes involved in the development of mother preference.  相似文献   
908.
Lamins are members of a multigene family of structural nuclear envelope (NE) proteins. Differentiated mammalian somatic cells express lamins A, C, B1, and B2. The composition and organization of the nuclear lamina of mammalian spermatogenic cells differ significantly from that of somatic cells as they express lamin B1 as well as two short germ line-specific isoforms, namely lamins B3 and C2. Here we describe in detail the expression pattern and localization of lamin B3 during mouse spermatogenesis. By combining RT-PCR, immunoblotting, and immunofluorescence microscopy, we show that lamin B3 is selectively expressed during spermiogenesis (i.e., postmeiotic stages of spermatogenesis). In round spermatids, lamin B3 is distributed in the nuclear periphery and, notably, also in the nucleoplasm. In the course of spermiogenesis, lamin B3 becomes redistributed as it concentrates progressively to the posterior pole of spermatid nuclei. Our results show that during mammalian spermiogenesis the nuclear lamina is composed of B-type isoforms only, namely the ubiquitous lamin B1 and the germline-specific lamin B3. Lamin B3 is the first example of a mammalian lamin that is selectively expressed during postmeiotic stages of spermatogenesis.  相似文献   
909.
Chk tyrosine kinase phosphorylates Src-family tyrosine kinases and suppresses their kinase activity. We recently showed that Chk localizes to the nucleus as well as the cytoplasm and inhibits cell proliferation. To investigate the role of nuclear Chk in proliferation, various Chk mutants were constructed and expressed. Nuclear localization of Chk-induced dynamic multi-lobulation of the nucleus and prolonged S phase of the cell cycle. The N-terminal domain of Chk and a portion of its kinase domain but not the kinase activity were responsible for induction of the multi-lobulation. Cell sorting analysis revealed that nuclear multi-lobulated cells were enriched in late S phase. Multi-lobulated nuclei were surrounded with lamin B1 that was particularly concentrated in concave regions of the nuclei. Furthermore, treatment with nocodazole or taxol disrupted multi-lobulation of the nucleus. These results suggest that nuclear multi-lobulation in late S phase, which is dependent on polymerization and depolymerization of microtubules, may be involved in nuclear Chk-induced inhibition of proliferation.  相似文献   
910.
孕烷醇酮对大鼠缰核痛神经元单位放电活动的影响   总被引:1,自引:0,他引:1  
目的:观察PGN对大鼠Hb痛神经元放电活动的影响及可能机制.方法:观察腹腔注射PGN对Hb痛神经元单位放电活动的影响.结果:PGN(i.p),大鼠Hb PEN放电受到抑制,PIN放电频率增加.预先i.p Bic可阻断PGN对Hb痛神经元放电活动的影响.结论:PGN具有降低大鼠Hb痛神经元对体外刺激敏感性的作用,其机制可能是由脑内的GABAA受体介导的.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号