首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1396篇
  免费   29篇
  国内免费   34篇
  1459篇
  2023年   5篇
  2022年   12篇
  2021年   16篇
  2020年   12篇
  2019年   17篇
  2018年   16篇
  2017年   11篇
  2016年   10篇
  2015年   24篇
  2014年   42篇
  2013年   42篇
  2012年   36篇
  2011年   62篇
  2010年   32篇
  2009年   45篇
  2008年   55篇
  2007年   46篇
  2006年   51篇
  2005年   46篇
  2004年   50篇
  2003年   43篇
  2002年   53篇
  2001年   30篇
  2000年   25篇
  1999年   20篇
  1998年   37篇
  1997年   38篇
  1996年   44篇
  1995年   45篇
  1994年   39篇
  1993年   23篇
  1992年   36篇
  1991年   24篇
  1990年   36篇
  1989年   24篇
  1988年   25篇
  1987年   13篇
  1986年   20篇
  1985年   33篇
  1984年   43篇
  1983年   34篇
  1982年   32篇
  1981年   28篇
  1980年   35篇
  1979年   31篇
  1978年   9篇
  1977年   4篇
  1976年   2篇
  1974年   3篇
排序方式: 共有1459条查询结果,搜索用时 0 毫秒
51.
The present study was undertaken to examine whether NKH477, a novel and potent water-soluble forskolin derivative, stimulates adenylyl cyclase and regulates brain-derived neurotrophic factor (BDNF) and TrkB expression in the rat brain. Administration of NKH477 at a dose of 1.0 mg/kg, but not 0.1 mg/kg, increased levels of cyclic AMP (cAMP) in a time-dependent manner in frontal cortex and hippocampus. Repeated administration of NKH477 (1.0 mg/kg) for 7 or 14 days also increased levels of cAMP in these two brain regions, indicating that the response does not desensitize with chronic treatment. In addition, administration of NKH477 at the 1 mg/kg dose increased the expression of BDNF and TrkB mRNA in frontal cortex and hippocampus. This effect was observed after single, as well as repeated (7 or 14 days), administration of NKH477. These results demonstrate that NKH477 administration rapidly increases cAMP levels in brain and provides evidence that stimulation of this second messenger system increases the expression of BDNF and TrkB mRNA.  相似文献   
52.
Chronic activation of mu-opioid receptors, which couple to pertussis toxin-sensitive Galphai/o proteins to inhibit adenylyl cyclase (AC), leads to a compensatory sensitization of AC. Pertussis toxin-insensitive mutations of Galphai/o subtypes, in which the pertussis toxin-sensitive cysteine is mutated to isoleucine (Galpha ), were used to determine whether each of the Galphai/o subtypes is able to mediate sensitization of AC. Galpha , G , G or G were individually transiently transfected into C6 glioma cells stably expressing the mu-opioid receptor, or transiently co-expressed with the mu-opioid receptor into human embryonic kidney (HEK)293T cells. Cells were treated with pertussis toxin to uncouple endogenous Galphai/o proteins, followed by acute or chronic treatment with the mu-opioid agonist, [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DAMGO). Each Galphai/o subtype mediated acute DAMGO inhibition of AC and DAMGO-induced sensitization of AC. The potency for DAMGO to stimulate sensitization was independent of the Galphai/o subtype, but the level of sensitization was increased in clones expressing higher levels of Galphai/o subunits. Sensitization of AC mediated by a component of fetal bovine serum, which was also dependent on the level of functional Galphai/o subunits in the cell, was observed. This serum-mediated sensitization partially masked mu-opioid-mediated sensitization when expressed as percentage overshoot due to an apparent increase in AC activity.  相似文献   
53.
Anti-fibrotic and organ protective effects of brain natriuretic peptide (BNP) have been reported. In this study, effects of BNP on liver fibrosis were examined in the carbon tetrachloride (CCl4)-induced liver fibrosis model using BNP-transgenic (Tg) and wild-type (WT) mice. Twice-a-week intraperitoneal injections of CCl4 for 8 weeks resulted in massive liver fibrosis, augmented transforming growth factor (TGF)-β1 and type I procollagen α1 chain (Col1a1) mRNA expression, and the hepatic stellate cell (HSC) activation in WT mice, all of which were significantly suppressed in Tg mice. These observations indicate that BNP inhibits liver fibrosis by attenuating the activation of HSCs.  相似文献   
54.
Summary Gonadotropin releasing hormone enhanced guanylate cyclase [E.C.4.6.1.2] two- to threefold in pituitary, testis, liver and kidney. Dose response relationships revealed that at a concentration of 1 nanomolar, gonadotropin releasing hormone caused a maximal augmentation of guanylate cyclase activity and that increasing its concentration to the millimolar range caused no further enhancement of this enzyme. There was an absolute cation requirement for gonadotropin releasing hormone's enhancement of guanylate cyclase activity as there was no increase without any cation present. Gonadotropin releasing hormone could increase guanylate cyclase activity with either calcium or manganese in the incubation medium but more augmentation was observed with manganese. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of gonadotropin releasing hormone.  相似文献   
55.
Summary Glucagon increased alanine amino transferase (AAT) activity in perfused rat liver by about 90% over control. Propranolol, the beta receptor antagonist, abolished the effect of glucagon on this enzyme. Well known beta receptor agonists like isoproterenol, norepinephrine and epinephrine also increased the enzyme activity under identical condition and the enhancement was similarly abolished by propranolol. These experiments suggest that the effect of glucagon on AAT was mediated through beta adrenergic receptor. However, the interesting observation was that phenylephrine, alpha receptor agonist and phenoxybenzamine and tolazoline, two alpha receptor antagonists, increased the AAT activity like glucagon in perfusion experiments and the effects of all these three agents were also abolished by propranolol. Glucagon, when perfused with phenoxybenzamine showed some additive effect. From all these results we are proposing that in our system phenoxybenzamine is acting as beta agonist although it is known to be an alpha antagonist.  相似文献   
56.
Phosphodiesterases (PDEs) catalyze the hydrolysis of the second messengers cAMP and cGMP. However, little is known about how PDE activity regulates cyclic nucleotide signals in vivo because, outside of specialized cells, there are few methods with the appropriate spatial and temporal resolution to measure cyclic nucleotide concentrations. We have previously demonstrated that adenovirus-expressed, olfactory cyclic nucleotide-gated channels provide real-time sensors for cAMP produced in subcellular compartments of restricted diffusion near the plasma membrane (Rich, T.C., K.A. Fagan, H. Nakata, J. Schaack, D.M.F. Cooper, and J.W. Karpen. 2000. J. Gen. Physiol. 116:147-161). To increase the utility of this method, we have modified the channel, increasing both its cAMP sensitivity and specificity, as well as removing regulation by Ca(2)+-calmodulin. We verified the increased sensitivity of these constructs in excised membrane patches, and in vivo by monitoring cAMP-induced Ca(2)+ influx through the channels in cell populations. The improved cAMP sensors were used to monitor changes in local cAMP concentration induced by adenylyl cyclase activators in the presence and absence of PDE inhibitors. This approach allowed us to identify localized PDE types in both nonexcitable HEK-293 and excitable GH4C1 cells. We have also developed a quantitative framework for estimating the K(I) of PDE inhibitors in vivo. The results indicate that PDE type IV regulates local cAMP levels in HEK-293 cells. In GH4C1 cells, inhibitors specific to PDE types I and IV increased local cAMP levels. The results suggest that in these cells PDE type IV has a high K(m) for cAMP, whereas PDE type I has a low K(m) for cAMP. Furthermore, in GH4C1 cells, basal adenylyl cyclase activity was readily observable after application of PDE type I inhibitors, indicating that there is a constant synthesis and hydrolysis of cAMP in subcellular compartments near the plasma membrane. Modulation of constitutively active adenylyl cyclase and PDE would allow for rapid control of cAMP-regulated processes such as cellular excitability.  相似文献   
57.
In hepatocytes obtained from hypothyroid rats, phorbol myristate acetate (PMA) and vasopressin diminished the accumulation of cyclic AMP and the stimulation of ureagenesis induced by isoprenaline or glucagon without altering significantly the accumulation of cyclic AMP induced by forskolin. Pretreatment with PMA markedly reduced the stimulation of ureagenesis and the accumulation of cyclic AMP induced by isoprenaline or glucagon. In membranes from cells pretreated with PMA, the stimulation of adenylate cyclase induced by isoprenaline + GTP, glucagon + GTP or by Gpp[NH]p were clearly diminished as compared to the control, whereas forskolin-stimulated activity was not affected. The data indicate heterologous desensitization of adenylate cyclase. It was also observed that the homologous (García-Sáinz J.A. and Michel, B. (1987) Biochem. J. 246, 331–336) and this heterologous β-adrenergic desensitizations were additive. Pertussis toxin treatment markedly reduced the heterologous desensitization of adenylate cyclase but not the homologous β-adrenergic desensitization. It is concluded that the homologous and heterologous desensitizations involve different mechanisms. The homologous desensitization seems to occur at the receptor level, whereas the heterologous probably involves the guanine nucleotide-binding regulatory protein, Ns.  相似文献   
58.
Abstract: Sodium is generally required for optimal inhibition of adenylyl cyclase by Gl/o-coupled receptors. Canna-binoids bind to specific receptors that act like other members of the Gl/o-coupled receptor superfamily to inhibit adenylyl cyclase. However, assay of cannabinoid inhibition of adenylyl cyclase in rat cerebellar membranes revealed that concentrations of NaCI ranging from 0 to 150 mM had no effect on agonist inhibition. This lack of effect of sodium was not unique to cannabinoid receptors, because the same results were observed using baclofen as an agonist for GABAB receptors in cerebellar membranes. The lack of sodium dependence was region-specific, because assay of cannabinoid and opioid inhibition of adenylyl cyclase in striatum revealed an expected sodium dependence, with 50 mM NaCI providing maximal inhibition levels by both sets of agonists. This difference in sodium requirements between these two regions was maintained at the G protein level, because agonist-stimulated low Km GTPase activity was maximal at 50 mM NaCI in striatal membranes, but was maximal in the absence of NaCI in cerebellar membranes. Assay of [3H]WIN 55212–2 binding in cerebellar membranes revealed that the binding of this labeled agonist was sensitive to sodium and guanine nucleotides like other Gl/o-coupled receptors, because both NaCI and the nonhydrolyzable GTP analogue Gpp(NH)p significantly inhibited binding. These results suggest that differences in receptor-G protein coupling exist for cannabinoid receptors between these two brain regions.  相似文献   
59.
A number of single gene mutations dramatically reduce the ability of fruit flies to learn or to remember. Cloning of the affected genes implicated the adenylyl cyclase second-messenger system as key in learning and memory. The expression patterns of these genes, in combination with other data, indicates that brain structures called mushroom bodies are crucial for olfactory learning. However, the mushroom bodies are not dedicated solely to olfactory processing; they also mediate higher cognitive functions in the fly, such as visual context generalization. Molecular genetic manipulations, coupled with behavioral studies of the fly, will identify rudimentary neural circuits that underly multisensory learning and perhaps also the circuits that mediate more-complex brain functions, such as attention.  相似文献   
60.
NF-kappaB activates fibronectin gene expression in rat hepatocytes   总被引:4,自引:0,他引:4  
Resveratrol (RSVL), an edible polyphenolic stilbene, claims a myriad of cardiovascular benefits. However, the molecular underpinnings of such actions are poorly understood. Currently, in sheep coronary arteries (SCA), RSVL markedly (threefold) enhanced cGMP formation (t(1/2): 6.5 min; EC(50): 3 microM). This response was not abrogated by the phosphodiesterase inhibitor (IBMX, 0.5 mM), but was partly sensitive (20-30%) to either removal of the endothelium, treatment with the nitric oxide synthase-inhibitor (L-NMMA, 10 microM), or with the soluble GC (sGC)-inhibitor (ODQ, 10 microM). In membrane preparations from denuded SCA, either RSVL or the pGC agonist atrial natriuretic peptide (ANP, 0.1-1 microM) activated GC in the particulate, but not in the soluble, membrane fraction. By contrast, the nitric oxide donor, sodium nitroprusside (SNP, 1-10 microM), stimulated GC only in the soluble fraction. Further, pretreatment with RSVL partly desensitized the ANP response, but was additive to that of SNP. In arterial tension studies, RSVL relaxed PGF(2alpha)-precontracted denuded rings in a concentration-dependent manner, a response that was markedly enhanced (approximately 18 fold) in the presence of IBMX. Conversely, precontraction with phorbol ester, which also desensitizes pGC, blunted relaxations to RSVL but not to forskolin or SNP. These findings demonstrate that RSVL increases cGMP in coronary arteries, mostly by activation of pGC. This pathway triggers vasorelaxant responses that remain effective in endothelium-disrupted arteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号