首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   8篇
  国内免费   2篇
  629篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   4篇
  2016年   6篇
  2015年   9篇
  2014年   15篇
  2013年   44篇
  2012年   10篇
  2011年   14篇
  2010年   8篇
  2009年   9篇
  2008年   16篇
  2007年   25篇
  2006年   21篇
  2005年   21篇
  2004年   15篇
  2003年   24篇
  2002年   20篇
  2001年   10篇
  2000年   14篇
  1999年   12篇
  1998年   17篇
  1997年   15篇
  1996年   9篇
  1995年   13篇
  1994年   13篇
  1993年   14篇
  1992年   9篇
  1991年   10篇
  1990年   14篇
  1989年   16篇
  1988年   16篇
  1987年   11篇
  1986年   18篇
  1985年   28篇
  1984年   23篇
  1983年   18篇
  1982年   19篇
  1981年   10篇
  1980年   10篇
  1979年   8篇
  1978年   2篇
  1977年   8篇
  1976年   3篇
  1974年   3篇
  1973年   4篇
排序方式: 共有629条查询结果,搜索用时 22 毫秒
131.
Two-dimensional proton nuclear magnetic resonance nuclear Overhauser effect experiments have been performed at a series of mixing times on proflavine and on a DNA octamer duplex [d-(GGAATTCC)]2 in solution. Using the complete matrix approach recently explored theoretically (Keepers and James, 1984), proton-proton internuclear distances were determined quantitatively for proflavine from the two-dimensional nuclear Overhauser effect results. Since proflavine is a rigid molecule with X-ray crystal structure determined, interproton distances obtained from the two-dimensional nuclear Overhauser effect experiments in solution can be compared with those for the crystalline compound agreement is better than 10 %. Experimental two-dimensional nuclear Overhauser effect spectral data for [d-(GGAATTCC)]2 were analyzed by comparison with theoretical two-dimensional nuclear Overhauser effect spectra at each mixing time calculated using the complete 70 × 70 relaxation matrix. The theoretical spectra were calculated using two structures: a standard B-form DNA structure and an energy-minimized structure based on similarity of the octamer's six internal residues with those of [d-(CGCGAATTCGCG)]2, for which the crystal structure has been determined. Neither the standard B-DNA nor the energy-minimized structure yield theoretical two-dimensional nuclear Overhauser effect spectra which accurately reproduce all experimental peak intensities. But many aspects of the experimental spectra can be represented by both the B-DNA and the energy-minimized structure. In general, the energy-minimized structure yields theoretical two-dimensional nuclear Overhauser effect spectra which mimic many, if not all, features of the experimental, spectra including structural characteristics at the purine-pyrimidine junction.  相似文献   
132.
Tubulin, the primary constituent of microtubules, is a GTP-binding proteins with structural similarities to other GTP-binding proteins. Whereas microtubules have been implicated as modulators of the adenylate cyclase system, the mechanism of this regulation has been elusive. Tubulin, polymerized with the hydrolysis-resistant GTP analog, 5'-guanylylimidodiphosphate [Gpp(NH)p], can promote inhibition of synaptic membrane adenylate cyclase which persists subsequent to washing. Tubulin with Gpp(NH)p bound was slightly less potent than free Gpp(NH)p in the inhibition of adenylate cyclase, but tubulin without nucleotide bound had no effect on the enzyme. A GTP-binding protein from the rod outer segment (transducin), with Gpp(NH)p bound, was also without effect on adenylate cyclase. Tubulin (regardless of the nucleotide bound to it) did not alter the activity of the adenylate cyclase catalytic unit directly. When tubulin was polymerized with the hydrolysis-resistant photoaffinity GTP analog, [32P]P3(4-azidoanilido)-P1-5'-GTP ([32P]AAGTP), and this protein was added to synaptic membranes, AAGTP was transferred from tubulin to the inhibitory GTP-binding protein, Gi. This transfer was blocked by prior incubation of the membranes with Gpp(NH)p or covalent binding of AAGTP to tubulin prior to exposure of that tubulin to membranes. Incubation of membranes with Gpp(NH)p subsequent to incubation with tubulin-AAGTP results in a decrease in AAGTP bound to Gi and a compensatory increase in AAGTP bound to the stimulatory GTP-binding protein, Gs. Likewise, persistent inhibition of adenylate cyclase by tubulin-Gpp(NH)p could be overridden by the inclusion of 100 microM Gpp(NH)p in the assay inhibition. Whereas Gpp(NH)p promotes persistent inhibition of synaptic membrane adenylate cyclase without incubation at elevated temperatures, tubulin [with AAGTP or Gpp(NH)p bound] requires 30 s incubation at 23 degrees C to effect adenylate cyclase inhibition. Photoaffinity experiments yield parallel results. These data are consistent with synaptic membrane tubulin regulating neuronal adenylate cyclase by transferring GTP to Gi and, subsequently, to Gs.  相似文献   
133.
Abstract

Animal models are widely used in atherosclerosis research. The most useful, economic and valid is mouse genetic model of this pathology. Purinergic signaling is an important mechanism regulating processes involved in the vascular inflammation and atherosclerosis. The aim of this study was to measure vascular activities of nucleotide and adenosine-degrading ecto-enzymes in different strains of mice and to compare them to atherosclerotic susceptibility.

The vascular extracellular nucleotide catabolism pathway was analyzed in 6-month-old male genetically unmodified mouse strains: FVB/NJ, DBA/2J, BALB/c, C57Bl/6J and mouse knock-outs on C57Bl/6J background for LDLR (LDLR-/-) and for ApoE and LDLR (ApoE-/-LDLR-/-). LDLR-/- mice were a model of moderate hypercholesterolemia, while ApoE-/-LDLR-/- mice, a model of severe hypercholesterolemia with advanced atherosclerosis.

FVB/NJ, DBA/2J and BALB/c mice showed high rates of vascular extracellular AMP hydrolysis and low activity of adenosine deamination. In turn, all mice with the C57Bl/6J background expressed diminished activity of vascular AMP hydrolysis. Mice with genetically-induced hyperlipidemia and atherosclerosis on the C57Bl/6J background revealed increased ecto-adenosine deaminase activity.

Mouse strains that were resistant to atherosclerosis (FVB/NJ, DBA/2J, BALB/c) exhibited a protective extracellular vascular ecto-enzyme pattern directed toward the production of anti-inflammatory and anti-atherosclerotic adenosine. In turn, mice with genetically induced hypercholesterolemia and atherosclerosis expressed disturbed activities of ecto-5’nucleotidase and ecto-adenosine deaminase related to decreased production and increased degradation of extracellular adenosine.  相似文献   
134.
The involvement of pyridine nucleotides in the reduction of extracytoplasmatic electron acceptors by iron-deficient Plantago lanceolata L. roots has been examined by measuring the changes in NAD(P)H and NAD(P) induced by various external acceptors. Exposure of the plants to FeEDTA, ferricyanide, ferric citrate or hexachloroiri-date resulted in a transient decrease in NADPH and an increase in NAD. No major differences in this pattern were observed between acceptors which were assumed to be reduced by different enzymes. The application of the membrane-permeable oxidant nitro blue tetrazolium led to similar changes in reduced and oxidized pyridine nucleotides and decreased the reduction of external acceptors. The amino acid analog p -fluorophenylalanine caused a transient decline in both NADPH level and NADPH/ NADP ratio and a decrease in the ratio of NADH to NAD without affecting the level of NADH. Exposure of the plants to the translation inhibitor cycloheximide increased both NADH and NADPH concentrations. A comparison of the redox activities and pyridine nucleotide fractions after inhibitor treatment revealed that the constitutive, but not iron stress-induced redox activity correlates with NADPH levels. These results are interpreted as confirming that the redox systems on the root plasma membrane are separately regulated. Possible metabolic reactions during the reduction processes are discussed.  相似文献   
135.
In order to assess the interaction between the cAMP-dependent and the cGMP-dependent phosphorylation pathways on the slow Ca2+ current (ICa(L)), whole-cell voltage-clamp experiments were conducted on embryonic chick heart cells. Addition of 8Br-cGMP to the bath solution reduced the basal (unstimulated) ICa(L). Intracellular application of the catalytic subunit of PK-A (PK-A(cat); 1.5 M) via the patch pipette rapidly potentiated ICa(L) by 215±16% (n=4); subsequent addition of 1 mM 8Br-cGMP to the bath reduced the amplitude of ICa(L) towards the initial control values (123±29%). Intracellular application of PK-G (25 nM pre-activated by 10–7 M cGMP), rapidly inhibited the basal ICa(L) by 64±6% (n=8). Heat-denatured PK-G was ineffective. Subsequent additions of relatively high concentrations of 8Br-cAMP (1 mM) or isoproterenol (ISO, 1–10 M) did not significantly remove the PK-G blockade of ICa(L). The results of the present study suggest that: (a) 8Br-cGMP can inhibit the basal or stimulated (by PK-A(cat)) ICa(L) in embryonic chick myocardial cells. (b) PK-G applied intracellularly inhibits the basal ICa(L).  相似文献   
136.
The effects of an adenosine deaminase inhibitor (deoxycoformycin, 500 μg/kg) and of an inhibitor of nucleoside transport (propentofylline, 10 mg/kg) on adenosine and adenine nucleotide levels in the ischemic rat brain were investigated. The brains of the rats were microwaved before, at the end of a 20 min period of cerebral ischemia (4 vessel occlusion+hypotension), or after 5, 10, 45, and 90 min of reperfusion. Deoxycoformycin increased brain adenosine levels during both ischemia and the initial phases of reperfusion. AMP levels were elevated during ischemia and after 5 min of reperfusion. ATP levels were elevated above those in the non-treated animals after 10 and 45 min of reperfusion. ADP levels were elevated above the non-drug controls at 90 min. These increases in ATP, ADP and AMP resulted in significant increases in total adenylates during ischemia, and after 10 min and 90 min of reperfusion. Propentofylline administration resulted in enhanced AMP levels during ischemia but did not alter adenosine or adenine nucleotide levels during reperfusion in comparison with non-treated controls.  相似文献   
137.
Brain levels of NADH and NAD+ were measured in three models of cerebral ischemia to determine whether degradation of the pyridine nucleotides is enhanced in models that generate high concentrations of lactic acid. Complete ischemia (decapitation), in which lactate increased to 14 mmol/kg, caused a gradual decrease in the NAD pool to 50% of control by 2 h. During focal ischemia (occlusion of the middle cerebral artery), the decrease in the NAD pool was less pronounced (82% of control at 2 h) despite the accentuated accumulation of lactate to 33 mmol/kg. In a third model (unilateral hypoxia-ischemia), pretreatment of animals with glucose augmented the ischemic elevation of lactate from 30 mmol/kg to 40 mmol/kg and greatly impaired restoration of energy metabolites during recirculation. However, glucose pretreatment had no effect on the size of the NAD pool during ischemia or early recovery. These results, therefore, demonstrate that the pyridine nucleotide pool is not rapidly degraded during ischemic insults that accumulate high concentrations of lactic acid. The stability of the NAD pool may have been enhanced by the limited increase in brain levels of NADH that occurred in these models of incomplete ischemia.  相似文献   
138.
The fate of cyclic AMP (cAMP), dibutyryl-cAMP (Bt2-cAMP), and the (Sp)-isomer of adenosine 3',5'-monophosphorothioate [(Sp)-cAMPS] was studied in the PC12 culture medium by means of HPLC. In the absence of PC12 cells, cAMP and Bt2-cAMP were rapidly degraded by nonspecific esterases and cyclic nucleotide phosphodiesterase both originating from the serum commonly used as a culture medium ingredient, whereas (Sp)-cAMPS was completely stable. Since 5'-AMP, adenosine, inosine, and hypoxanthine appeared in the culture medium after incubation with cAMP or Bt2-cAMP, we have determined their effect on nerve growth factor (NGF)-induced neurite outgrowth. 5'-AMP, adenosine, and inosine were indeed potent agents in producing a potentiating effect on NGF-induced early neurite outgrowth at a concentration of 1 mM. Thus, cAMP metabolites had the capacity to induce an effect that has been described as cAMP-specific. In serum-free culture medium and in the presence of cells, all cyclic nucleotides were taken up by PC12 cells. Uptake was highly correlated with the hydrophobic nature of the compounds, and was accompanied by a simultaneous excretion of metabolites. On incubation with cAMP, NGF had a pronounced effect on the metabolic pattern found in the culture medium. In particular, dephosphorylation of 5'-AMP was specifically enhanced. This effect of NGF on the degradation of cAMP was also apparent when cAMP metabolites were incubated with PC12 cells. Whereas 5'-AMP degradation was greatly increased, NGF had no effect on the metabolism of the other purine compounds.  相似文献   
139.
We report here that forskolin acts in a synergistic manner with dopaminergic agonists, guanine nucleotides, or sodium fluoride to potentiate the stimulation of rat striatal adenylate cyclase mediated by these reagents. In the presence of 100 microM GTP, 100 microM guanyl-5'-yl imidodiphosphate [Gpp(NH)p], or 10 mM NaF, there is a greater than additive increase in forskolin-stimulated enzyme activity as well as a concomitant decrease (two- to fourfold) in the EC50 value for forskolin stimulation of striatal enzyme activity. In the presence of various concentrations of forskolin (10 nM-100 microM), the stimulation of adenylate cyclase elicited by GTP, Gpp(NH)p, and NaF is potentiated 194-1,825%, 122-1,141%, and 208-938%, respectively, compared with the stimulation by these agents above basal activity in the absence of forskolin. With respect to 3,4-dihydroxyphenylethylamine (dopamine) receptor-mediated stimulation of striatal enzyme activity, the stimulation of enzyme activity by dopaminergic agonists, in the absence or presence of forskolin, was GTP-dependent and could be antagonized by the selective D-1 antagonist SCH23390 (100 nM), indicating that these effects are mediated by D-1 dopamine receptors. In the presence of 100 microM GTP, forskolin at various concentrations markedly potentiates the stimulation elicited by submaximal as well as a maximally effective concentrations of dopamine (100 microM) and SKF38393 (1 microM). At higher concentrations of forskolin (10-100 microM) the stimulation elicited by the partial agonist SKF38393 is comparable to that of the full agonist dopamine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
140.
Summary Mouse lymphoma cells have three major isoaccepting lysine tRNAs. Two of these isoacceptors, tRNA2 Lys and tRNA4 Lys, were sequenced by rapid gel or chromatogram readout methods. They have the same primary sequence but differ in two modified nucleotides. tRNA4 Lys has an unmodified uridine replacing one dihydrouridine and an unidentified nucleotide, t6A*, replacing t6A. This unidentified nucleotide is not a hypomodified form of t6A. Thus, tRNA4ys is not a simple precursor of tRNA2 Lys. Both tRNAs have an unidentified nucleotide, U**, in the third position of the anticodon. Also, partial sequences of minor homologs of tRNA2 Lys and tRNA4 Lys were obtained. The distinctions between tRNA2 Lys and tRNA4 Lys may be part of significant cellular roles as illustrated by the differential effects of these isoacceptors on the synthesis by lysyl-tRNA synthetase of diadenosine-5,5-P1,P4-tetraphosphate, a putative signal in DNA replication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号