首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   618篇
  免费   8篇
  国内免费   2篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   4篇
  2016年   6篇
  2015年   9篇
  2014年   15篇
  2013年   44篇
  2012年   10篇
  2011年   14篇
  2010年   8篇
  2009年   9篇
  2008年   16篇
  2007年   25篇
  2006年   21篇
  2005年   21篇
  2004年   15篇
  2003年   24篇
  2002年   20篇
  2001年   10篇
  2000年   14篇
  1999年   12篇
  1998年   17篇
  1997年   15篇
  1996年   9篇
  1995年   13篇
  1994年   13篇
  1993年   14篇
  1992年   9篇
  1991年   10篇
  1990年   14篇
  1989年   16篇
  1988年   16篇
  1987年   11篇
  1986年   18篇
  1985年   28篇
  1984年   23篇
  1983年   18篇
  1982年   19篇
  1981年   10篇
  1980年   10篇
  1979年   8篇
  1978年   2篇
  1977年   8篇
  1976年   3篇
  1974年   3篇
  1973年   4篇
排序方式: 共有628条查询结果,搜索用时 31 毫秒
101.
The behavior of a ciliate protozoan, Paramecium, is known to represent the electrical state of the cell membrane, and regulation of the membrane potential and ciliary motion are known to involve cAMP and cGMP. The present study shows the synchrony of circadian changes in motility, resting membrane potential and cyclic nucleotides in P. multimicronucleatum. Using an automated system for tracking isolated single microorganisms, the isolated Paramecium cells are confirmed to swim fast and straight during the day (and subjective day) and slowly, with frequent turning, at night (and subjective night). The resting membrane potential is more negative during the day than at night. cAMP and cGMP concentrations oscillate in a manner, such that both cAMP and cGMP are higher during the day (or subjective day) than at night (or subjective night). The ratio of cGMP to cAMP during the light and dark cycle (LD) fluctuates, paralleling the fluctuation of the resting membrane potential measured during the LD. These results suggest that the Paramecium will provide an excellent model to explore daily and circadian orchestration of second messengers mediating signals from ambient light/dark cycles and circadian pacemaker to ion channels and cilia, directly involved in daily and circadian cellular outputs of resting membrane potential and motility. Accepted: 23 January 1997  相似文献   
102.
Temperature reduction in CHO cell batch culture may be beneficial in the production of recombinant protein and in maintenance of viability. The effects on cell cycle, apoptosis and nucleotide pools were studied in cultures initiated at 37°C and temperature shifted to 30 °C after 48 hours. In control cultures maintained at 37 °C, viable cells continued to proliferate until the termination of the culture, however, temperature reduction caused a rapid decrease in the percent of cells in S phase and accumulation of cells in G-1. This was accompanied by a concurrent reduction in U ratio (UTO/UDP-GNAc), previously shown to be a sensitive indicator of growth rate. Culture viability was extended following temperature shift, as a result of delayed onset of apoptosis, however, once initiated, the rate and manner of cell death was similar to that observed at 37 °C. All nucleotide pools were similarly degraded at the time of apoptotic cell death. Temperature reduction to 30 °C did not decrease the energy charge of the cells, however, the overall rate of metabolism was reduced. The latter may be sufficient to extend culture viability via a reduction in toxic metabolites and/or limitation of nutrient deprivation. However, the possibility remains that the benefits of temperature reduction in terms of both viability and productivity are more directly associated with cultures spending extended time in G-1.  相似文献   
103.
An isocratic HPLC method for the simple and selective determination of adenine nucleoside and nucleotides has been developed. The separation is achieved at room temperature by reversed-phase chromatography (Shiseido, Capcell Pak C18). A mixture of 0.1 M triethylamine (TEA) phosphate buffer and methanol (95:5, v/v) is used as a standard eluent. Influence of pH and concentrations of organic modifiers and TEA ion on capacity factors of adenine compounds has been investigated. It has been also found that the TEA ion in the eluent is adsorbed onto the reversed-phase surface. The results clearly demonstrate that ion-pair formation with TEA ion occurs probably both in the mobile phase and on the stationary phase and governs the retention of adenine and nucleotides in the present system. The HPLC system is applied to the analysis of adenine nucleotides formed as intermediates in the synthesis of 3′-phosphoadenosine 5′-phosphosulphate (PAPS) and to the assays of ATPases and 5′-nucleotidase activities in rat liver plasma membrane. This method is a new type of ion-pair reversed-phase HPLC system and is suitable for the separation of highly polar organic anions, especially for adenine nucleotides.  相似文献   
104.
Total tRNA isolated from four-day-old ragi (Eleusin coracana) seedlings has been shown to be highly methylated. Each tRNA molecule on average contains two 2′-O-ribose methylated nucleosides. The high molar yields of 1-methyladenosine (1.6%) indicate that nearly a third of all the tRNA molecules contains more than one residue of 1-methyladenosine. Thermal denaturation studies with total tRNA show that the hypermethylated ragi tRNA melts slower that the yeast tRNA which is less methylated but otherwise has similar base composition. Ragi tRNA is also less susceptible to ribonucleases A, T2 and T2.  相似文献   
105.
An active cyclic nucleotide phosphodiesterase has been partially purified from the 100 000 g supernatant of a spinach homogenate. It precipitated at 20–40% saturation with (NH4)2SO4 and was separated on a column of Sephadex G-200 into two major peaks of activity (peaks 1 and 2). Peak 1 (MW 5 × 105) was resolved by column chromatography on DEAE-cellulose into 5 protein fractions; two of these (1c and 1m) exhibited cyclic nucleotide phosphodiesterase activity. Subcellular fractionation showed that the phosphodiesterase of highest specific activity is located in the peroxisomes but that an enzyme of relatively high specific activity also occurs in the chloroplast and Golgi fractions. The largest total activity was in the microsomes. Isoelectric focussing of chloroplast phosphodiesterase activity gave two bands corresponding to peaks 1c and 2. Similar examination of the microsomal, peroxisomal and Golgi fractions showed phosphodiesterases corresponding to peaks 1m and 2. Peak 1c activity is greater towards purine 3′,5′-cyclic nucleotides than towards their 2′,3′-isomers; the converse is true of peak 1m. Examination of the properties of 1c and 1m showed a number of other differences. The pH optimum of 1c is 6.1 and that of 1m is 4.9. Theophylline (0.1 mM) inhibited 1c to a greater extent than it did 1m; Ca2+ stimulated 1c activity but had no effect on 1m. Pre-incubation with trypsin inhibited 1m activity whereas similar treatment of 1c gave an initial 5-fold stimulation. Repeated freezing and thawing of preparations 1c and 1m also evoked a difference in response. These results were shown to be attributable to removal of an inhibitor from 1c. Evidence is presented that an endogenous activator is also present.  相似文献   
106.
Measurement of extracellular ATP in biological solutions is complicated by protein-binding and rapid enzymatic degradation. We hypothesized that the concentration of extracellular ATP could be determined luminometrically by limiting degradation and measuring the free and protein-bound fractions. ATP was added (a) at constant concentration to solutions containing varying albumin concentrations; (b) at varying concentrations to a physiological albumin solution (4 gm/dL); (c) at varying concentrations to plasma. After centrifugation, a fraction of each supernatant was heated. ATP in heated and unheated samples was measured luminometrically. Blood was drawn into saline or an ATP-stabilizing solution and endogenous plasma ATP measured. ATP-albumin binding was a linear function of albumin concentration (3.5% ATP bound at 100 micromol/L to 33.2% ATP bound at 1000 micromol/L) but independent of ATP concentration (29.3%, 10-1000 nmol/L ATP in 602 micromol/L albumin). Heating released the majority of bound ATP from albumin-containing solutions (94.8 +/- 1.7%) and plasma (97.6 +/- 5.1%). Total endogenous plasma ATP comprised 93 +/- 27 nmol/L (free) and 150 +/- 40 nmol/L (total fraction). Without stabilizing solution, degradation of free endogenous plasma ATP occurred. Within a physiological range (10-1000 nmol/L), ATP binds albumin independently of ATP concentration. Heating releases bound ATP, enabling accurate luminometric measurement of total extracellular ATP (free and bound) in biological samples.  相似文献   
107.
Although usually steady-state fluxes and metabolite levels are assessed for the study of metabolic regulation, much can be learned from studying the transient response during quick changes of an input to the system. To this end we study the transient response of O2 consumption in the heart during steps in heart rate. The time course is characterized by the mean response time of O2 consumption which is the first statistical moment of the impulse response function of the system (for mono-exponential responses equal to the time constant). The time course of O2 uptake during quick changes is measured with O2 electrodes in the arterial perfusate and venous effluent of the heart, but the venous signal is delayed with respect to O2 consumption in the mitochondria due to O2 diffusion and vascular transport. We correct for this transport delay by using the mass balance of O2, with all terms (e.g. O2 consumption and vascular O2 transport) taken as function of time. Integration of this mass balance over the duration of the response yields a relation between the mean transit time for O2 and changes in cardiac O2 content. Experimental data on the response times of venous [O2] during step changes in arterial [O2] or in perfusion flow are used to calculate the transport time between mitochondria and the venous O2 electrode. By subtracting the transport time from the response time measured in the venous outflow the mean response time of mitochondrial O2 consumption (tmito) to the step in heart rate is obtained.In isolated rabbit heart we found that tmito to heart rate steps is 4-12 s at 37°C. This means that oxidative phosphorylation responds to changing ATP hydrolysis with some delay, so that the phosphocreatine levels in the heart must be decreased, at least in the early stages after an increase in cardiac ATP hydrolysis. Changes in ADP and inorganic phosphate (Pi) thus play a role in regulating the dynamic adaptation of oxidative phosphorylation, although most steady state NMR measurements in the heart had suggested that ADP and Pi do not change. Indeed, we found with 31P-NMR spectroscopy that phosphocreatine (PCr) and Pi change in the first seconds after a quick change in ATP hydrolysis, but remarkably they do this significantly faster (time constant ~2.5 s) than mitochondrial O2 consumption (time constant 12 s). Although it is quite likely that other factors besides ADP and Pi regulate cardiac oxidative phosphorylation, a fascinating alternative explanation is that the first changes in PCr measured with NMR spectroscopy took exclusively place in or near the myofibrils, and that a metabolic wave must then travel with some delay to the mitochondria to stimulate oxidative phosphorylation. The tmito slows with falling temperature, intracellular acidosis, and sometimes also during reperfusion following ischemia and with decreased mitochondrial aerobic capacity. In conclusion, the study of the dynamic adaptation of cardiac oxidative phosphorylation to demand using the mean response time of cardiac mitochondrial O2 consumption is a very valuable tool to investigate the regulation of cardiac mitochondrial energy metabolism in health and disease.  相似文献   
108.
Metabotropic glutamate receptors (mGluRs) have been shown to modulate adenylate cyclase activity via G-proteins. In the present study we report similar results to the previously observed in the literature, showing that glutamate and the metabotropic agonists, 1S,3R-ACPD or quisqualate induced cAMP accumulation in hippocampal slices of young rats. Moreover, guanine nucleotides GTP, GDP or GMP, inhibited the glutamate-induced cAMP accumulation. By measuring LDH activity in the buffer surrounding the slices, we showed that the integrity of the slices was maintained, indicating that the effect of guanine nucleotides was extracellular. GMP, GDP-S or Gpp(NH)p abolished quisqualate-induced cAMP accumulation. GDP-S or Gpp(NH)p but not GMP inhibited 1S,3R-ACPD-induced cAMP accumulation. The response evoked by glutamate was also abolished by the mGluR antagonists: L-AP3 abolished glutamate-induced cAMP accumulation in a dose-dependent manner and MCPG was effective only at the 2 mM dose. DNQX was ineffective. We are reporting here, an inhibition induced by guanine nucleotides, via an extracellular site (s), similar to the observed with classical glutamate antagonists on a cellular response evoked by mGluR agonists.  相似文献   
109.
Ancillary beta-subunits regulate the voltage-dependence and the kinetics of Kv currents. The Kvbeta proteins bind pyridine nucleotides with high affinity but the role of cofactor binding in regulating Kv currents remains unclear. We found that recombinant rat Kvbeta 1.3 binds NADPH (K(d)=1.8+/-0.02 microM) and NADP(+) (K(d)=5.5+/-0.9 microM). Site-specific modifications at Tyr-307 and Arg-316 decreased NADPH binding; whereas, K(d) NADPH was unaffected by the R241L mutation. COS-7 cells transfected with Kv1.5 cDNA displayed non-inactivating currents. Co-transfection with Kvbeta1.3 accelerated Kv activation and inactivation and induced a hyperpolarizing shift in voltage-dependence of activation. Kvbeta-mediated inactivation of Kv currents was prevented by the Y307F and R316E mutations but not by the R241L substitution. Additionally, the R316E mutation weakened Kvalpha-beta interaction. Inactivation of Kv currents by Kvbeta:R316E was restored when excess NADPH was included in the patch pipette. These observations suggest that NADPH binding is essential for optimal interaction between Kvalpha and beta subunits and for Kvbeta-induced inactivation of Kv currents.  相似文献   
110.
Binding properties of the subtypes of adenosine A2 receptors in membrane preparations and the effects of adenosine receptor ligands on cAMP accumulation in slices from the optic tectum of neonatal chicks have been investigated. [3H]2-[4-(2-p-carboxyethyl)phenylamino]-5'-N-ethylcarboxaminoadenosine (CGS 21680), a selective ligand for adenosine A2a receptors, did not bind to optic tectal membranes, as observed with rat striatal membranes. CGS 21680 also did not induce cyclic AMP accumulation in optic tectum slices. However, 5'-N-ethylcarboxamidoadenosine (NECA), 2-chloro-adenosine or adenosine induced a 2.5- to 3-fold increase on cyclic AMP accumulation in this preparation. [3H]NECA binds to fresh non-washed-membranes obtained from optic tectum of chicks, displaying one population of binding sites, which can be displaced by NECA, 8-phenyltheophylline, 2-chloro-adenosine, but is not affected by CGS 21680. The estimated KD value was 400.90 ± 80.50 nM and the Bmax was estimated to be 2.51 ± 0.54 pmol/mg protein. Guanine nucleotides, which modulate G-proteins activity intracellularly, are also involved in the inhibition of glutamate responses by acting extracellularly. Moreover, we have previously reported that guanine nucleotides potentiate, while glutamate inhibits, adenosine-induced cyclic AMP accumulation in slices from optic tectum of chicks. However, the guanine nucleotides, GMP or GppNHp and the metabotropic glutamate receptors agonist, 1S,3R-ACPD did not alter the [3H]NECA binding observed in fresh non-washed-membranes. Therefore, the adenosine A2 receptor found in the optic tectum must be the adenosine A2b receptor which is available only in fresh membrane preparations, and its not modulated by guanine nucleotides or glutamate analogs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号