首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3285篇
  免费   145篇
  国内免费   135篇
  2024年   6篇
  2023年   33篇
  2022年   49篇
  2021年   52篇
  2020年   64篇
  2019年   83篇
  2018年   86篇
  2017年   68篇
  2016年   65篇
  2015年   86篇
  2014年   151篇
  2013年   357篇
  2012年   91篇
  2011年   163篇
  2010年   89篇
  2009年   133篇
  2008年   131篇
  2007年   137篇
  2006年   127篇
  2005年   115篇
  2004年   119篇
  2003年   114篇
  2002年   109篇
  2001年   74篇
  2000年   69篇
  1999年   58篇
  1998年   77篇
  1997年   66篇
  1996年   43篇
  1995年   68篇
  1994年   35篇
  1993年   58篇
  1992年   45篇
  1991年   52篇
  1990年   52篇
  1989年   59篇
  1988年   43篇
  1987年   33篇
  1986年   37篇
  1985年   39篇
  1984年   48篇
  1983年   32篇
  1982年   35篇
  1981年   20篇
  1980年   21篇
  1979年   24篇
  1978年   19篇
  1977年   8篇
  1976年   5篇
  1973年   7篇
排序方式: 共有3565条查询结果,搜索用时 359 毫秒
981.
Red wine and its components have been shown to possess cardioprotective and anti-atherogenic effects. Additionally, red wine and many of its components like catechin, epicatechin, rutin, transresveratrol and quercetin possess antioxidant properties. Oxidized low density lipoprotein (LDL) is involved in the development of an atherosclerotic lesion. Red wine, therefore, may be anti-atherogenic because of its antioxidant effects on LDL modification. This study examined the antioxidant effects of catechin, epicatechin, rutin, transresveratrol, quercetin and Merlot wines on LDL oxidation. Merlot was chosen because although other red wines have been tested, limited information exists for this variety. Oxidation was carried out with AAPH (2,2-Azo-bis(2-amidinopropane) dihydrochloride) and AMVN (2,2-Azo-bis(2,4-dimethylvaleronitrile)), as water and lipid soluble peroxyl radical generating systems (FRGS), respectively. This allowed us to determine the lipophilic antioxidant characteristics of the wine and its components. Conjugated diene assays were used to measure LDL oxidation over 6 hrs. In an AAPH system, all polyphenolic compounds except transresveratrol displayed an antioxidant effect. LDL oxidation by AAPH was also inhibited by aliquots of Merlot wine. No antioxidant effects were observed in an AMVN environment except for a mild antioxidant effect by quercetin. Surprisingly, incubation of LDL with Merlot wine strongly protected against oxidation by AMVN. In summary, the five phenolic compounds displayed antioxidant effects in a water soluble free radical generating system, but only quercetin showed this in a lipid soluble one. However, red wine inhibited LDL oxidation by both water and lipid soluble free radical generating systems. Our data suggest, therefore, that red wines contain unidentified antioxidants that provide protection against LDL oxidation within a lipid soluble environment. (Mol Cell Biochem 263: 211–215, 2004)  相似文献   
982.
Mitochondrial oxidative stress is thought to be an important pathological mediator of neuronal death in Parkinson's disease. However, the precise mechanism by which mitochondrial oxidative stress mediates the death of dopaminergic neurons of the substantia nigra remains unclear. We tested the idea that neuronal damage in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson's disease results, in part, from superoxide radical toxicity via inactivation of an iron-sulfur (Fe-S) protein, mitochondrial aconitase. Administration of MPTP in mice resulted in inactivation of mitochondrial aconitase, but not fumarase in the substantia nigra. MPTP treatment mobilized an early mitochondrial pool of iron detectable by bleomycin chelation that coincided with mitochondrial aconitase inactivation. MPTP-induced mitochondrial aconitase inactivation, iron accumulation and dopamine depletion were significantly attenuated in transgenic mice overexpressing mitochondrial Sod2 and exacerbated in partial deficient Sod2 mice. These results suggest that mitochondrial aconitase may be an important early source of mitochondrial iron accumulation in experimental Parkinson's disease, and that superoxide radical toxicity manifested by oxidative inactivation of mitochondrial aconitase may play a pathogenic role in Parkinson's disease.  相似文献   
983.
Paraoxonase1 (PON1), one of HDL-asssociated antioxidant proteins, is known to be sensitive to oxidative stress. Here, the effect of endogenous reducing compounds on Cu2+-mediated inactivation of PON1 was examined. Cu2+-mediated inactivation of PON1 was enhanced remarkably by catecholamines, but not by uric acid or homocysteine. Furthermore, catecholamines such as 3,4-dihydroxyphenylalanine (DOPA), dopamine or norepinephrine were more effective than caffeic acid or pyrocatechol in promoting Cu2+-mediated inactivation of PON1, suggesting the importance of dihydroxybenzene group as well as amino group. DOPA at relatively low concentrations showed a concentration-dependent inactivation of PON1 in a concert with Cu2+, but not Fe2+. The DOPA/Cu2+-induced inactivation of PON1 was prevented by catalase, but not hydroxyl radical scavengers, consistent with Cu2+-catalyzed oxidation. A similar result was also observed when HDL-associated PON1 (HDL-PON1) was exposed to DOPA/Cu2+. Separately, it was found that DOPA at low concentrations (1-6 μM) acted as a pro-oxidant by enhancing Cu2+-induced oxidation of HDL, while it exhibited an antioxidant action at ≥10 μM. In addition, Cu2+-oxidized HDL lost the antioxidant action against LDL oxidation. Meanwhile, the role of DOPA/Cu2+-oxidized HDL differed according to DOPA concentration; HDL oxidized with Cu2+ in the presence of DOPA (60 or 120 μM) maintained antioxidant activity of native HDL, in contrast to an adverse effect of DOPA at 3 or 6 μM. These data indicate that DOPA at micromolar level may act as a pro-oxidant in Cu2+-induced inactivation of PON1 as well as oxidation of HDL. Also, it is proposed that the oxidative inactivation of HDL-PON1 is independent of HDL oxidation.  相似文献   
984.
Peroxisomes are involved in oxidative metabolic reactions and have the capacity to generate large amounts of reactive oxygen species that could damage biomolecules including their own resident proteins. The purpose of this study was to determine whether peroxisomal proteins are susceptible to oxidation and whether oxidative damage affects their enzymatic activity. Peroxisomal proteins were subjected to metal-catalyzed oxidation (MCO) with CuCl(2)/ascorbate and derivatized with 2,4-dinitrophenylhydrazine which allowed for spectrophotometric quantification of carbonylation. Immunochemical detection of carbonylated peroxisomal proteins, resolved by gel electrophoresis and detected with anti-DNP antibodies, revealed five oxidatively modified proteins with the following molecular weights: 80, 66, 62, 55, and 50 kDa. The proteins at 66, 62, and 55 kDa were identified as malate synthase (MS), isocitrate lyase, and catalase (CAT), respectively. MS and CAT were estimated to contain 2-3 mol of carbonyl/mol of protein as a result of MCO. Enzymatic assays revealed varying degrees of activity loss. Isocitrate lyase and malate synthase showed significant loss of activity while catalase and malate dehydrogenase were less inhibited by carbonylation. Our findings show that peroxisomal proteins are vulnerable to MCO damage and thus may also be affected by in vivo exposure to reactive oxygen species.  相似文献   
985.
A biocatalyst for the removal of sulfite from alcoholic beverages   总被引:2,自引:0,他引:2  
The presence of sulfites in alcoholic beverages, particularly in wines, can cause allergic responses with symptoms ranging from mild gastrointestinal problems to life threatening anaphylactic shock in a substantial portion of the population. We have developed a simple and inexpensive biocatalytic method that employs wheatgrass (Triticum aestivum) chloroplasts for the efficient oxidation of sulfites in wines to innocuous sulfates. A sufficiently high rate of sulfite oxidation was obtained in the presence of ethanol at concentrations commonly found in most wines. Crude chloroplast preparations at a concentration as low as 5 mg/mL were capable of reducing sulfite in commercial white wines from 150 ppm to under 7.5 ppm within 3 hours. A 93% removal of sulfite in commercial red wines was observed with 1 mg/mL chloroplasts within 45 min. Optimal sulfite removal efficiency was observed at pH 8.5 and was promoted by illumination, indicating the participation of light-induced photosynthetic electron transport processes in sulfite oxidation. Overall, this work indicates that biocatalytic oxidation using wheatgrass chloroplasts can be employed to remove sulfites from beverages prior to consumption.  相似文献   
986.
Fourier transform Raman spectroscopy has been used to investigate the chemical changes taking place during lipid oxidation in several edible oils. Oxidative degradation of six vegetable oils was accelerated by heating at 160 degrees C. Formation of aldehydes was detected, and saturated as well as alpha,beta-unsaturated aldehydes could be identified with the help of pure component spectra. The formation of conjugated double bond systems and the isomerisation of cis to trans double bonds was observed in the C=C stretching region and found to follow a distinct pattern for the different oils. It was possible to associate these differences to the fatty acid composition. The time-dependent intensity changes in certain Raman bands were compared to conventional parameters used to determine the extent of oxidation in oils, such as anisidine value and K(270), and showed good correlation.  相似文献   
987.
RhoGTPases, which are activated by specific guanine nucleotide exchange factors (GEFs), play pivotal roles in several cellular functions. We identified a new RhoGEF (GrinchGEF) containing the typical Dbl homology domain, a putative WD40-like domain, and two predicted transmembrane helices. In contrast to most other RhoGEFs, it exhibits no sequence similarities to known pleckstrin homology domains. GrinchGEF mRNA was highly abundant in skeletal muscle and pancreas. Despite the predicted transmembrane domains, subcellular localization studies revealed a cytosolic distribution. In vitro, GrinchGEF induced the GDP/GTP exchange at RhoA, but not at Rac1 or Cdc42. In intact cells, GrinchGEF induced specifically Rho activation and enhanced RhoA-C-specific downstream effects.  相似文献   
988.
The ability of heterotrophic bacteria in a nitrite-oxidising bioreactor to respire with nitrate as an electron acceptor was examined. Approximately 70% of 1000 heterotrophic isolates were able to express a nitrate reductase. A detailed survey of 15 isolates showed that five expressed the azide-insensitive nitrate reductase encoded by the napA gene. A two-round PCR amplification of the napA gene using degenerate PCR primers and DNA sequence analysis of these products confirmed the presence of this gene in the positive isolates. Partial 16S rDNA products and napA products were amplified from the biomass in the bioreactor and denaturing gradient gel electrophoresis of these products identified 21 distinct ribotypes and 12 distinct napA sequences. The results show that the ability to respire with nitrate as an electron acceptor under aerobic conditions is widespread among the heterotrophic population of this bioreactor.  相似文献   
989.
Alcohol metabolism by Acholeplasma and Mycoplasma cell suspensions was determined using changes in dissolved oxygen tension to monitor oxygen uptake. All seven Acholeplasma test species oxidised ethanol and (where tested) propanol, butanol and pentanol. The rate of oxidation, at any particular substrate concentration, decreased with increasing alcohol molecular mass. Amongst 20 Mycoplasma species tested, M. agalactiae, M. bovis, M. dispar, M. gallisepticum, M. pneumoniae and M. ovipneumoniae oxidised ethanol. Propanol was also oxidised by M. dispar and isopropanol by M. agalactiae, M. bovis and M. ovipneumoniae. Isopropanol was oxidised at particularly high rates (V(max)100 nmol O(2) taken up min(-1) mg cell protein(-1)) and with a relatively high affinity (K(m) value<2 mM); oxygen uptake was consistent with oxidation to acetone. The significance of alcohol oxidation is unclear, as it would not be predicted to lead to ATP synthesis.  相似文献   
990.
Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria   总被引:11,自引:0,他引:11  
The capacity of denitrifying bacteria for anaerobic utilization of saturated hydrocarbons (alkanes) was investigated with n-alkanes of various chain lengths and with crude oil in enrichment cultures containing nitrate as electron acceptor. Three distinct types of denitrifying bacteria were isolated in pure culture. A strain (HxN1) with oval-shaped, nonmotile cells originated from a denitrifying enrichment culture with crude oil and was isolated with n-hexane (C6H14). Another strain (OcN1) with slender, rod-shaped, motile cells was isolated from an enrichment culture with n-octane (C8H18). A third strain (HdN1) with oval, somewhat pleomorphic, partly motile cells originated from an enrichment culture with aliphatic mineral oil and was isolated with n-hexadecane (C16H34). Cells of hexane-utilizing strain HxN1 grew homogeneously in the growth medium and did not adhere to the alkane phase, in contrast to the two other strains. Quantification of substrate consumption and cell growth revealed the capacity for complete oxidation of alkanes under strictly anoxic conditions, with nitrate being reduced to dinitrogen. Received: 3 August / Accepted: 6 October 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号