首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3285篇
  免费   145篇
  国内免费   135篇
  2024年   6篇
  2023年   33篇
  2022年   49篇
  2021年   52篇
  2020年   64篇
  2019年   83篇
  2018年   86篇
  2017年   68篇
  2016年   65篇
  2015年   86篇
  2014年   151篇
  2013年   357篇
  2012年   91篇
  2011年   163篇
  2010年   89篇
  2009年   133篇
  2008年   131篇
  2007年   137篇
  2006年   127篇
  2005年   115篇
  2004年   119篇
  2003年   114篇
  2002年   109篇
  2001年   74篇
  2000年   69篇
  1999年   58篇
  1998年   77篇
  1997年   66篇
  1996年   43篇
  1995年   68篇
  1994年   35篇
  1993年   58篇
  1992年   45篇
  1991年   52篇
  1990年   52篇
  1989年   59篇
  1988年   43篇
  1987年   33篇
  1986年   37篇
  1985年   39篇
  1984年   48篇
  1983年   32篇
  1982年   35篇
  1981年   20篇
  1980年   21篇
  1979年   24篇
  1978年   19篇
  1977年   8篇
  1976年   5篇
  1973年   7篇
排序方式: 共有3565条查询结果,搜索用时 679 毫秒
941.
942.
Fatty acid-binding protein and its relation to fatty acid oxidation   总被引:12,自引:0,他引:12  
A relation between fatty acid oxidation capacity and cytosolic FABP content was found in heart and various muscles of the rat. Other tissues do not show such a relation, since they are involved in more or other pathways of fatty acid metabolism. At postnatal development FABP content and fatty acid oxidation capacity rise concomitantly in heart and quadriceps muscle in contrast to in liver and kidney. A dietary fat content of 40 en. % increased only the FABP content of liver and adipose tissue. Peroxisomal proliferators increased fatty acid oxidation in both liver and kidney, but only the FABP content of liver, and had no effect on heart and skeletal muscle. The FABP content of muscle did not show adaptation to various conditions. Only it increased in fast-twitch muscles upon chronic electrostimulation and endurance training.  相似文献   
943.
Oxidation of NADH by decavanadate, a polymeric form vanadate with a cage-like structure, in presence of rat liver microsomes followed a biphasic pattern. An initial slow phase involved a small rate of oxygen uptake and reduction of 3 of the 10 vanadium atoms. This was followed by a second rapid phase in which the rates of NADH oxidation and oxygen uptake increased several-fold with a stoichiometry of NADH: O2 of 11. The burst of NADH oxidation and oxygen uptake which occurs in phosphate, but not in Tris buffer, was prevented by SOD, catalase, histidine, EDTA, MnCl2 and CuSO4, but not by the hydroxyl radical quenchers, ethanol, methanol, formate and mannitol. The burst reaction is of a novel type that requires the polymeric structure of decavanadate for reduction of vanadium which, in presence of traces of H2O2, provides a reactive intermediate that promotes transfer of electrons from NADH to oxygen.  相似文献   
944.
The chemistry of the lowland rice rhizosphere   总被引:1,自引:1,他引:0  
Kirk  G. J. D.  Begg  C. B. M.  Solivas  J. L. 《Plant and Soil》1993,155(1):83-86
Models and experimental studies of the rhizosphere of rice plants growing in anaerobic soil show that two major processes lead to considerable acidification (1–2 pH units) of the rhizosphere over a wide range of root and soil conditions. One is generation of H+ in the oxidation of ferrous iron by O2 released from the roots. The other is release of H+ from roots to balance excess intake of cations over anions, N being taken up chiefly as NH4 +. CO2 exchange between the roots and soil has a much smaller effect. The zone of root-influence extends a few mm from the root surface. There are substantial differences along the root length and with time. The acidification and oxidation cause increased sorption of NH4 + ions on soil solids, thereby impeding the movement of N to absorbing root surfaces. But they also cause solubilization and enhanced uptake of soil phosphate.  相似文献   
945.
The abundance and distribution of dissolved CH4 were determined from 1987–1990 in Lake Fryxell, Antarctica, an amictic, permanently ice-covered lake in which solute movement is controlled by diffusion. CH4 concentrations were < 1 υM in the upper oxic waters, but increased below the oxycline to 936 μM at 18 m. Sediment CH4 was 1100 μmol (1 sed)−1 in the 0–5 cm zone. Upward flux from the sediment was the source of the CH4, NH4 +, and DOC in the water column; CH4 was 27% of the DOC+CH4 carbon at 18 m. Incubations with surficial sediments indicated that H14CO3 reduction was 0.4 μmol (1 sed)−1 day−1 or 4× the rate of acetate fermentation to CH4. There was no measurable CH4 production in the water column. However, depth profiles of CH4, NH4, and DIC normalized to bottom water concentrations demonstrated that a significant CH4 sink was evident in the anoxic, sulfate-containing zone of the water column (10–18 m). The δ13CH4 in this zone decreased from −72 % at 18 m to −76% at 12 m, indicating that the consumption mechanism did not result in an isotopic enrichment of 13CH4. In contrast, δ13CH4 increased to −55 % at 9 m due to aerobic oxidation, though this was a minor aspect of the CH4 cycle. The water column CH4 profile was modeled by coupling diffusive flux with a first order consumption term; the best-fit rate constant for anaerobic CH4 consumption was 0.012 yr−1. On a total carbon basis, CH4 consumption in the anoxic water column exerted a major effect on the flux of carbonaceous material from the underlying sediments and serves to exemplify the importance of CH4 to carbon cycling in Lake Fryxell.  相似文献   
946.
Rates of rhizospheric methane oxidation were evaluated by aerobic incubations of subcores collected in flooded anoxic soils populated by emergent macrophytes, by greenhouse whole plant incubations, and by CH4 stable isotopic analysis. Subcore incubations defined upper limits for rhizospheric methane oxidation on an areal basis which were equal to or greater than emission rates. These rates are considered upper limits because O2 did not limit CH4 uptake as is likely to occur in situ. The ratio of maximum potential methane oxidation (MO) to methane emission (ME) ranged from 0.7 to 1.9 in Louisiana rice (Oryza sativa), from 1.0 to 4.0 in a N. Florida Sagittaria lancifolia marsh, and from 5.6 to 51 in Everglades Typha domingensis and Cladium jamaicense areas. Methane oxidation/methane emission ratios determined in whole plant incubations of Sagittaria lancifolia under oxic and anoxic conditions ranged from 0.5 to 1.6. Methane oxidation activity associated with emergent aquatic macrophytes was found primarily in fine root material. A weak correlation was observed between live root biomass and CH4 uptake in Typha. Rhizomes showed small or zero rates of methane uptake and no uptake was associated with plant stems. Methane stable isotope data from a S. lancifolia marsh were as follows: CH4 emitted from plants: −61.6 ± 0.3%; CH4 within stems: −42.0 ± 0.2%; CH4 within sedimentary bubbles: −51.7 ± 0.3%). The 13C enrichment observed relative to emitted CH4 could be due to preferential mobilization of CH4 containing the lighter isotope and/or the action of methanotrophic bacteria.  相似文献   
947.
Abstract The results of Most Probable Number determinations applying low and high concentrations of nitrite reveal the presence of at least two different communities of potential nitrite-oxidizing bacteria in a number of soil types. The effect of plant roots on these two communities was studied in pot experiments with soil from natural grassland in the presence or absence of either Festuca rubra or Plantago lanceolata . Both plant species are dominant on the grassland soil used in this study. Plant roots had a stimulating effect on the numbers of nitrite-oxidizing bacteria determined with 0.05 mM nitrite in the enumeration medium as well as on the potential nitrite-oxidizing activity. On the other hand, plants roots, especially in younger plants, repressed the numbers of nitrite-oxidizing bacteria enumerated with 5.0 mM nitrite in the counting medium. Pure culture studies with organotrophically grown Nitrobacter species clearly showed that this type of potential nitrite-oxidizing bacteria could not have been responsible for the relatively high Most Probable Numbers observed in the root zones when applying 0.05 mM nitrite in the enumeration medium.  相似文献   
948.
Abstract: In the present study the effects of repeated administration of reserpine on striatal dopamine receptor and guanine nucleotide binding protein mRNAs were determined. Twenty-four hours after seven consecutive daily injections of reserpine—a treatment that is known to produce functional sensitization of D1 and D2 dopamine receptors—the level of striatal D1 dopamine receptor mRNA was unchanged. However, the level of mRNA for the G protein Gsα was increased by 127%. After extended reserpine treatment for 14 days, levels of both striatal D1 DA receptor and Gsα mRNAs were elevated by 99 and 78%, respectively. Seven days of reserpine treatment also increased levels of mRNA of the striatal D2 dopamine receptor and of G proteins Gi2α and Goα by 200, 79, and 32%, respectively. After 14 days of reserpine treatment the level of striatal D2 dopamine receptor mRNA was increased by twofold. In contrast, levels of the mRNAs coding for the G proteins Gi2α and Goα were unchanged. These data suggest that dopamine receptors and their respective G proteins play important roles in the development of sensitization of striatal dopamine receptors during repeated reserpine treatment. Furthermore, the persistent increase in level of striatal Gsα mRNA suggests that this G protein is necessary to maintain supersensitivity of the striatal D1 dopamine receptor system following long-term dopamine depletion.  相似文献   
949.
Blair  Graeme J.  Lefroy  Rod B.  Dana  M.  Anderson  G. C. 《Plant and Soil》1993,(1):379-382
An elemental S oxidation model has been developed which combines a maximum S release rate with modifiers for temperature and soil moisture conditions. This model has been combined with a pasture growth and CNSP nutrient cycling model to match S oxidation rate to pasture S demand. In two Southern Australian enviroments, 100m elemental S was superior to 200m particles whilst in Northern Australia the 200m particles were superior. These models can be used to match S release to plant demand.  相似文献   
950.
Background : Mass spectrometry (MS)-based proteomic analysis of posttranslational modifications (PTMs) usually requires the pre-enrichment of modified proteins or peptides. However, recent ultra-deep whole proteome profiling generates millions of spectra in a single experiment, leaving many unassigned spectra, some of which may be derived from PTM peptides. Methods : Here we present JUMPptm, an integrative computational pipeline, to extract PTMs from unenriched whole proteome. JUMPptm combines the advantages of JUMP, MSFragger and Comet search engines, and includes de novo tags, customized database search and peptide filtering, which iteratively analyzes each PTM by a multi-stage strategy to improve sensitivity and specificity. Results : We applied JUMPptm to the deep brain proteome of Alzheimer's disease (AD), and identified 34,954 unique peptides with phosphorylation, methylation, acetylation, ubiquitination, and others. The phosphorylated peptides were validated by enriched phosphoproteome from the same sample. TMT-based quantification revealed 482 PTM peptides dysregulated at different stages during AD progression. For example, the acetylation of numerous mitochondrial proteins is significantly decreased in AD. A total of 60 PTM sites are found in the pan-PTM map of the Tau protein. Conclusion : The JUMPptm program is an effective tool for pan-PTM analysis and the resulting AD pan-PTM profile serves as a valuable resource for AD research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号