首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3285篇
  免费   145篇
  国内免费   135篇
  2024年   6篇
  2023年   33篇
  2022年   49篇
  2021年   52篇
  2020年   64篇
  2019年   83篇
  2018年   86篇
  2017年   68篇
  2016年   65篇
  2015年   86篇
  2014年   151篇
  2013年   357篇
  2012年   91篇
  2011年   163篇
  2010年   89篇
  2009年   133篇
  2008年   131篇
  2007年   137篇
  2006年   127篇
  2005年   115篇
  2004年   119篇
  2003年   114篇
  2002年   109篇
  2001年   74篇
  2000年   69篇
  1999年   58篇
  1998年   77篇
  1997年   66篇
  1996年   43篇
  1995年   68篇
  1994年   35篇
  1993年   58篇
  1992年   45篇
  1991年   52篇
  1990年   52篇
  1989年   59篇
  1988年   43篇
  1987年   33篇
  1986年   37篇
  1985年   39篇
  1984年   48篇
  1983年   32篇
  1982年   35篇
  1981年   20篇
  1980年   21篇
  1979年   24篇
  1978年   19篇
  1977年   8篇
  1976年   5篇
  1973年   7篇
排序方式: 共有3565条查询结果,搜索用时 234 毫秒
821.
Protein oxidation by reactive oxygen species has been associated with aging and neurodegenerative disorders, and histidine is one of the major oxidation targets due to its metal‐chelating property and susceptibility to metal‐catalyzed oxidation. 2‐Oxohistidine, the major product of histidine oxidation, has been recently identified as a stable marker of oxidative damage in biological systems, but its biophysical and biochemical properties are understudied, partly because of difficulties in its chemical synthesis. We developed an efficient method to generate a 2‐oxohistidine side chain using metal‐catalyzed oxidation, applicable to both monomers and peptides. By optimizing reagent ratios and pH buffering in Cu2+/ascorbate/O2 reaction system, we improved the yield more than tenfold compared to reported conditions, which allowed us to obtain homogeneously modified 2‐oxohisidine peptides for further studies. Analysis of 2‐oxohistidine‐containing model peptides by liquid chromatography‐tandem mass spectrometry demonstrated increased retention time in reverse‐phase chromatography and general stability of 2‐oxohistidine under electrospray ionization and collision‐induced dissociation. Thus, large‐scale analysis of 2‐oxohistidine‐modified proteome should be feasible using shotgun protein mass spectrometry, and we were able to observe such peptides in proteomics datasets. The feasibility of acquiring purified peptide probes and peptide antigens containing 2‐oxohistidine will help advance the study of this non‐enzymatic posttranslational modification. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
822.
Spinel lithium manganese oxide (LiMn2O4) has attracted much attention as a promising cathode material for large‐scale lithium ion batteries. However, its continuous capacity fading at elevated temperature is an obstacle to extended cycling in large‐scale applications. Here, surface Mn oxidation state controlled LiMn2O4 is synthesized by coating stoichiometric LiMn2O4 with a cobalt‐substituted spinel, for which stoichiometric LiMn2O4 is used as the starting material and onto which a LixMnyCozO4 layer is coated from an acetate‐based precursor solution. In the coated material, the concentrations of both cobalt and Mn4+ ions vary from the surface to the core. the former without any lattice mismatch between the coating layer and host material. Cycle tests are performed under severe conditions, namely, high temperature and intermittent high current load. During the first discharge cycle at 7 C and 60 °C, a high energy and power density are measured for the coated material, 419 and 3.16 Wh kg?1, respectively, compared with 343 and 3.03 Wh kg?1, respectively, for the bare material. After 65 cycles under severe conditions, the coated material retains 82% and ≈100% of the initial energy and power density, respectively, whereas the bare material retains only ≈68% and ≈97% thereof.  相似文献   
823.
Sterols, essential lipids of most eukaryotic cells, ensure important structural and signaling functions. The selection pressure that has led to different dominant sterols in the three eukaryotic kingdoms remains unknown. Here, we investigated the influence of the progression in the different steps of the ergosterol biosynthetic pathway (EBP) on the yeast resistance to transitions from aqueous to aerial media, typical perturbations of the higher fungi habitats. Five mutants of the EBP (ergΔ), accumulating different sterol intermediates in the EBP, and the wild‐type (WT) strain were exposed to drying under atmospheric air or nitrogen and wetting. Results show that the progression in the EBP parallels an increase in the yeast resistance to air‐drying with a maximal survival rate for the WT strain. When drying/wetting was performed under nitrogen, yeast survival was higher, particularly for the earlier mutants of the EBP. Thus, ergosterol, through its protective role against mechanical and oxidative stress, might have been selected by the pressure induced by drying/wetting cycles occurring in the fungi habitats. These results support the Bloch hypothesis, which postulates that the properties of sterols are gradually optimized for function along the biosynthetic pathway and provide a response to the enduring question “why ergosterol in fungi?”.  相似文献   
824.
Variants of carnitine palmitoyltransferase 1A (CPT1A), a key hepatic lipid oxidation enzyme, may influence how fatty acid oxidation contributes to obesity and metabolic outcomes. CPT1A is regulated by diet, suggesting interactions between gene variants and diet may influence outcomes. The objective of this study was to test the association of CPT1A variants with body composition and lipids, mediated by consumption of polyunsaturated fatty acids (PUFA). Obesity phenotypes and fasting lipids were measured in a cross-sectional sample of Yup'ik Eskimo individuals (n = 1141) from the Center of Alaska Native Health Research (CANHR) study. Twenty-eight tagging CPT1A SNPs were evaluated with outcomes of interest in regression models accounting for family structure. Several CPT1A polymorphisms were associated with HDL-cholesterol and obesity phenotypes. The P479L (rs80356779) variant was associated with all obesity-related traits and fasting HDL-cholesterol. Interestingly, the association of P479L with HDL-cholesterol was still significant after correcting for body mass index (BMI), percentage body fat (PBF), or waist circumference (WC). Our findings are consistent with the hypothesis that the L479 allele of the CPT1A P479L variant confers a selective advantage that is both cardioprotective (through increased HDL-cholesterol) and associated with reduced adiposity.  相似文献   
825.
Rac signaling in breast cancer: a tale of GEFs and GAPs   总被引:1,自引:0,他引:1  
Rac GTPases, small G-proteins widely implicated in tumorigenesis and metastasis, transduce signals from tyrosine-kinase, G-protein-coupled receptors (GPCRs), and integrins, and control a number of essential cellular functions including motility, adhesion, and proliferation. Deregulation of Rac signaling in cancer is generally a consequence of enhanced upstream inputs from tyrosine-kinase receptors, PI3K or Guanine nucleotide Exchange Factors (GEFs), or reduced Rac inactivation by GTPase Activating Proteins (GAPs). In breast cancer cells Rac1 is a downstream effector of ErbB receptors and mediates migratory responses by ErbB1/EGFR ligands such as EGF or TGFα and ErbB3 ligands such as heregulins. Recent advances in the field led to the identification of the Rac-GEF P-Rex1 as an essential mediator of Rac1 responses in breast cancer cells. P-Rex1 is activated by the PI3K product PIP3 and Gβγ subunits, and integrates signals from ErbB receptors and GPCRs. Most notably, P-Rex1 is highly overexpressed in human luminal breast tumors, particularly those expressing ErbB2 and estrogen receptor (ER). The P-Rex1/Rac signaling pathway may represent an attractive target for breast cancer therapy.  相似文献   
826.
The essential amino acids (EAAs) arginine, histidine, lysine, and methionine, as well as cysteine (semiessential), are believed to be susceptible to reactions with reactive oxygen species (ROS) in biological systems. The decreased availability of these EAAs could harm insect nutrition, since several of them can also be limiting for protein synthesis. However, no in vivo studies have quantified the effect of ROS in the midguts of insect herbivores on EAA composition. This study examined the association between elevated levels of ROS in the midgut fluid of Lymantria dispar caterpillars and the compositions of EAAs (protein‐bound + protein‐free) in their midgut fluid and frass. Contrary to expectation, the compositions of EAAs were not significantly decreased by ROS in midgut fluid ex vivo when incubated with phenolic compounds. Two in vivo comparisons of low‐ and high‐ROS‐producing leaves also showed similar results: there were no significant decreases in the compositions of EAAs in the midgut fluids and/or frass of larvae with elevated levels of ROS in their midguts. In addition, waste nitrogen excretion was not significantly increased from larvae on high‐ROS treatments, as would be expected if ROS produced unbalanced EAA compositions. These results suggest that L. dispar larvae are able to tolerate elevated levels of ROS in their midguts without nutritionally significant changes in the compositions of susceptible EAAs in their food.  相似文献   
827.
To elucidate the mechanisms of ultrasonication on the amyloid fibril formation, we quantitatively determined the ultrasonic power using both calorimetry and potassium iodide (KI) oxidation, and under the properly calibrated ultrasonic power, we investigated the ultasonication-induced amyloid formation process of the mouse prion protein (mPrP(23-231)). These methods revealed that the ultrasonic power in our system ranged from 0.3 to 2.7 W but entirely dependent on the positions of the ultrasonic stage. Intriguingly, the nucleation time of the amyloid fibrils was found to be shortened almost proportionally to the ultrasonic power, indicating that the probability of the occurrence of nucleus formation increases proportionally to the ultrasonic power. Moreover, mPrP(23-231) formed two types of aggregates: rigid fibrils and short fibrils with disordered aggregates, depending on the ultrasonic power. The nucleation of rigid fibrils required an ultrasonic power larger than 1.5 W. While at the strong ultrasonic power larger than 2.6 W, amyloid fibrils were formed early, but simultaneously fine fragmentation of fibrils occurred. Thus, an ultrasonic power of approximately 2.0 W would be suitable for the formation of rigid mPrP(23-231) fibrils under the conditions utilized (ultrasonication applied for 30 s every 9 min). As ultrasonication has been widely used to amplify the scrapie form of the prion protein, or other amyloids in vitro, the calorimetry and KI oxidation methods proposed here might help determining the adequate ultrasonic powers necessary to amplify them efficiently.  相似文献   
828.
Like many desert animals, the spinifex hopping mouse, Notomys alexis, can maintain water balance without drinking water. The role of the kidney in producing a small volume of highly concentrated urine has been well-documented, but little is known about the physiological mechanisms underpinning the metabolic production of water to offset obligatory water loss. In Notomys, we found that water deprivation (WD) induced a sustained high food intake that exceeded the pre-deprivation level, which was driven by parallel changes in plasma leptin and ghrelin and the expression of orexigenic and anorectic neuropeptide genes in the hypothalamus; these changed in a direction that would stimulate appetite. As the period of WD was prolonged, body fat disappeared but body mass increased gradually, which was attributed to hepatic glycogen storage. Switching metabolic strategy from lipids to carbohydrates would enhance metabolic water production per oxygen molecule, thus providing a mechanism to minimize respiratory water loss. The changes observed in appetite control and metabolic strategy in Notomys were absent or less prominent in laboratory mice. This study reveals novel mechanisms for appetite regulation and energy metabolism that could be essential for desert rodents to survive in xeric environments.  相似文献   
829.
In this article, a recombinant cyclohexanone monooxygenase (CHMO), overexpressed in Escherichia coli has been used to study the oxidation of bicyclo[3.2.0]hept-2-en-6-one to its two corresponding lactones at very high enantiomeric excess. The reaction is a useful model for the study of biocatalytic oxidations to create optically pure molecules. The major limitations to a highly productive biocatalytic oxidation in this case are oxygen supply, product inhibition, and biocatalyst stability. In this article, we investigate the effects of whole cell biocatalyst concentration on the rate of reaction at a range of scales from shake flasks to 75 L bioreactors. At low cell concentrations (<2 g(dcw)/L) the maximum specific rate (0.65 g/g(dcw).h) is observed. However, at higher cell concentrations (> 2 g(dcw)/L), the reaction becomes oxygen limited and both the specific rate and absolute rate decrease with further increases in cell concentration. The role of oxygen limitation in reducing the rate of reaction with scale was investigated by increasing the maximum oxygen transfer rate in the reactor at a high cell concentration and observing the increase in product formation rate. We propose a qualitative model demonstrating the relationship between oxygen limitation, biocatalyst concentration, and the rate of reaction. This conceptual model will be a useful guide in the industrial scale-up of whole cell mediated Baeyer-Villiger biocatalysis.  相似文献   
830.
Mitochondrial permeability transition (MPT) is a Ca(2+)-dependent, cyclosporin A (CsA)-sensitive, non-selective inner membrane permeabilization process. It is often associated with apoptotic cell death, and is induced by a wide range of agents or conditions, usually involving reactive oxygen species (ROS). In this study, we demonstrated that Mangifera indica L. extract (Vimang), in the presence of 20 microM Ca(2+), induces MPT in isolated rat liver mitochondria, assessed as CsA-sensitive mitochondrial swelling, closely reproducing the same effect of mangiferin, the main component of the extract, as well as MPT-linked processes like oxidation of membrane protein thiols, mitochondrial membrane potential dissipation and Ca(2+) release from organelles. The flavonoid catechin, the second main component of Vimang, also induces MPT, although to a lesser extent; the minor, but still representative Vimang extract components, gallic and benzoic acids, show respectively, low and high MPT inducing abilities. Nevertheless, following exposure to H(2)O(2)/horseradish peroxidase, the visible spectra of these compounds does not present the same changes previously reported for mangiferin. It is concluded that Vimang-induced MPT closely reproduces mangiferin effects, and proposed that this xanthone is the main agent responsible for the extract's MPT inducing ability, by the action on mitochondrial membrane protein thiols of products arising as a consequence of the mangiferin's antioxidant activity. While this effect would oppose the beneficial effect of Vimang's antioxidant activity, it could nevertheless benefit cells exposed to over-production of ROS as occurring in cancer cells, in which triggering of MPT-mediated apoptosis may represent an important defense mechanism to their host.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号