首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3290篇
  免费   147篇
  国内免费   134篇
  3571篇
  2024年   11篇
  2023年   33篇
  2022年   50篇
  2021年   52篇
  2020年   64篇
  2019年   83篇
  2018年   86篇
  2017年   68篇
  2016年   65篇
  2015年   86篇
  2014年   151篇
  2013年   357篇
  2012年   91篇
  2011年   163篇
  2010年   89篇
  2009年   133篇
  2008年   131篇
  2007年   137篇
  2006年   127篇
  2005年   115篇
  2004年   119篇
  2003年   114篇
  2002年   109篇
  2001年   74篇
  2000年   69篇
  1999年   58篇
  1998年   77篇
  1997年   66篇
  1996年   43篇
  1995年   68篇
  1994年   35篇
  1993年   58篇
  1992年   45篇
  1991年   52篇
  1990年   52篇
  1989年   59篇
  1988年   43篇
  1987年   33篇
  1986年   37篇
  1985年   39篇
  1984年   48篇
  1983年   32篇
  1982年   35篇
  1981年   20篇
  1980年   21篇
  1979年   24篇
  1978年   19篇
  1977年   8篇
  1976年   5篇
  1973年   7篇
排序方式: 共有3571条查询结果,搜索用时 0 毫秒
41.
Epinephrine-promoted release of [3H]guanylylimidodiphosphate ([3H]Gpp(NH)p) from human platelet membranes has been used to probe the interactions between alpha2-adrenergic recpetors and Ni, the guanine nucleotide binding protein that couples those receptors to an inhibition of adenylate cyclase activity. We show here that ADP, which also acts through specific platelet receptors to inhibit adenylate cyclase activity, also promotes the release of [3H]Gpp(NH). The amount of [3H]Gpp(NH)-release elicited by epinephrine and by ADP together is equal to the sum of the amounts released by the two agents acting individually. Furthermore the maximal amounts of [3H]Gpp(NH)-release elicited by each of the two agents approximates the numbers of receptors for ADP and epinephrine present in the platelet membranes. These results suggest that the two receptor types interact with distinct portions of the pool of Ni molecules and that each receptor initiates guanine-nucleotide exchange on a single molecule of Ni.  相似文献   
42.
C Gauvrit  R Scalla 《FEBS letters》1983,158(2):222-224
Fragments derived from human plasma fibronectin by enzymatic degradation were tested in the Boyden chamber for chemotactic activity towards various fibroblast strains. The results provide clear evidence that the chemotactic activity is restricted to a defined region of the fibronectin molecule which is the same for various fibroblast strains. The active domain is localized between the collagen binding site and the major heparin binding site, about 170 kDa apart from the N-terminal and about 70 kDa from the C-terminal ends of the two subunit peptide chains.  相似文献   
43.
Abstract: The effect of guanine nucleotides on the binding properties of presynaptic muscarinic receptors has been studied in a membrane preparation from the electric organ of Torpedo marmorata by measuring the competitive displacement of the radiolabelled antagonist, [3H]quinuclidinyl benzilate, by nonradioactive muscarinic ligands. The binding of the antagonists, atropine, scopolamine and pirenzepine was to a single class of sites [slope factors (pseudo Hill coefficients) close to 1] and was unaffected by 0.1 m M GTP. The binding of the N -methylated antagonists, N -methylatropine and N -methyl-scopolamine was more complex (slope factors <1) but also insensitive ( N- methylatropine) to 0.1 m M GTP. Agonist binding was complex and could be resolved into two binding sites with relatively high and low affinities. The proportion of high-affinity sites varied with the nature of the agonist (15–80%). Agonist binding was depressed by 0.1 m M GTP, and the order of sensitivity was oxotremorine-M > carbamoylcholine > muscarine > acetylcholine > arecoline > oxotremorine. The binding of pilocarpine, a partial agonist, was unaffected by GTP. With carbamoylcholine as a test ligand the GTP effect on agonist binding was half-maximal at 12 μM. GDP and guanylylimidodiphosphate produced comparable inhibition of carbamoylcholine binding, but GMP and cyclic GMP were ineffective, as were various adenine nucleotides. Analysis of agonist binding in terms of a two-site model indicates that the predominant effect of guanine nucleotides is to reduce the number of sites of higher affinity.  相似文献   
44.
The levels of individual free and conjugated ecdysteroids and ecdysteroid acids, labeled from [14C]cholesterol, in five different age groups of male Manduca sexta during pupal-adult development were determined by HPLC. Eight free ecdysteroids, eight ecdysteroid phosphates, and two ecdysteroid acids were identified. Newly ecdysed pupae contained predominantly 3-epiecdysteroids in each of the free, conjugated, and acidic ecdysteroid fractions. The titer of each ecdysteroid fraction rose sharply by day 4, and this was particularly noteworthy with respect to free ecdysone and 3-epi-20-hydroxyecdysonoic acid. This stage demonstrated high degrees of ecdysone biosynthesis, oxidative catabolism, and phosphorylation. As development proceeded to day 16, total ecdysteroid titer remained constant; a decreasing free ecdysteroid titer was accompanieid by increasing titers of both conjugates and acids resulting from the metabolic processes of hydroxylation, oxidation, epimerization, and phosphorylation. The predominant metabolites throughout development were 3-epi-20-hydroxyecdysonoic acid and the phosphate conjugates of 3-epi-20-hydroxyecdysone and 3-epi-20,26-dihydroxyecdysone. The ultimate inactivation of the ecdysteroids of M. sexta during pupal-adult development is possibly mediated by two pairs of metabolically-linked processes, one leading to a 3-epiecdysteroid acid, and the other to 3-epiecdysteroid phosphates.  相似文献   
45.
The reaction of ribose with horseradish peroxidase in the presence of H2O2 is accompanied by light emission. The detection of horseradish peroxidase Compound II (FeO2+) indicates that the enzyme participates in a normal peroxidatic cycle. Hydrogen peroxide converts horseradish peroxidase into Compound I (FeO3+) which in turn is converted into Compound II by abstracting a hydrogen atom from ribose forming a ribosyl radical. In aerated solutions oxygen rapidly adds to the ribosyl radical. Based on the spectral characteristics and the enhancement of the chemiluminescence by chlorophyll-a, xanthene dyes, D2O and DABCO, it is suggested that the excited species, apparently triplet carbonyls and 1O2, are formed from the bimolecular decay of the peroxyl radicals via the Russell mechanism.  相似文献   
46.
The role of glucocorticoids in the modulation of central alpha 2-receptor mechanisms was investigated by in vitro receptor binding studies. [3H]Clonidine and [3H]idazoxan were used as radioligands. The alpha 2-receptor subtypes and guanine nucleotide sensitivity were studied in homologue and heterologue displacement experiments following hydrocortisone treatment (25 mg/kg s.c.) for 10 days. High and low agonist affinity states of the alpha 2-receptor could be identified in 3H-antagonist-agonist and 3H-agonist-antagonist displacement experiments, which may correspond to different regulatory protein-nucleotide associated forms of the receptor. In the presence of 10 microM GTP, the high-affinity binding was depressed. Following hydrocortisone treatment, there was no detectable change either in the affinity or the binding site concentration of clonidine in homologue displacement ("cold saturation") experiments. The affinity of idazoxan, however, was depressed. The effect of GTP was similar to the controls in this experimental arrangement. In contrast, in heterologue binding studies the high-affinity binding site was not demonstrable and the amount of low-affinity binding increased following the hydrocortisone treatment. The high-affinity site reappeared in the presence of GTP. The change in GTP sensitivity suggests that the nucleotide regulatory system may be involved in the action of adrenal steroids on central alpha 2-receptoral mechanisms.  相似文献   
47.
Three distinct antipeptide antisera generated against synthetic peptides that represent parts of the primary sequence of the alpha-subunit of the (pertussis toxin-sensitive) guanine nucleotide binding protein G0 were used in two-dimensional immunoblots of membranes of neuroblastoma X glioma (NG108-15) cells. Each antiserum identified two distinct polypeptides of some 39 kDa. These had apparent isoelectric points of 5.5 and 5.8. Differentiation of NG108-15 cells in response separately to dibutyryl cyclic AMP (cAMP), 8-bromo cAMP, forskolin, and prostaglandin E1 produced elevated levels of G0 alpha, as has previously been noted in one-dimensional immunoblots. Two-dimensional analysis demonstrated that the cAMP-induced increases in levels of G0 alpha were only of the more acidic isoform. The two isoforms were both substrates for pertussis toxin-catalysed ADP-ribosylation and did not appear to represent differentially phosphorylated forms of the same polypeptide. Separation of the two forms of G0 alpha could be achieved in one-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis when 4 M deionized urea was included in the resolving gel. The more slowly migrating band was the acidic form and corresponded exactly in mobility with the major form of G0 from both rat and mouse brain. There was no equivalent in brain of the more rapidly migrating form of G0 from the cells. In agreement with the data from two-dimensional gels, only the more slowly migrating form was expressed in considerably higher amounts following cAMP-induced differentiation of NG108-15 cells. Of these two forms of "G0," the acidic species is equivalent to G0 from brain, but the basic form is not identical with G0*, which has been purified from bovine brain.  相似文献   
48.
The role of calcium and sodium in stimulating phosphoinositide hydrolysis in brain was investigated in rat cerebral cortical synaptoneurosomes. In buffer containing 136 mM sodium and various concentrations of added calcium (0-1.0 mM), basal, potassium-stimulated, and norepinephrine-stimulated formation of 3H-inositol phosphates decreased with decreasing extracellular calcium. Potassium- and norepinephrine-stimulated formation of 3H-inositol phosphates was reduced to basal levels by addition of EGTA. Isosmotically replacing sodium with choline chloride or N-methyl-D-glucamine to disrupt Na+/Ca2+ exchange resulted in a large increase in the formation of 3H-inositol phosphates. Measurement of cytosolic calcium with fura-2 revealed that the cytosolic calcium concentration was sensitive to changes in the extracellular calcium concentration and increased on resuspension of synaptoneurosomes in sodium-free rather than sodium-containing medium. In the absence of sodium, potassium-stimulated formation of 3H-inositol phosphates was reduced or eliminated, depending on the extracellular calcium concentration. Subtraction of basal formation of 3H-inositol phosphates from that in the presence of 1 mM carbachol or 100 microM norepinephrine revealed that the carbachol-stimulated component was the same in the presence and absence of sodium, whereas the norepinephrine-stimulated component was reduced in the absence of sodium. Addition of the protein kinase C activator 12-O-tetradecanoylphorbol 13-acetate inhibited norepinephrine- and, to a lesser extent, carbachol but not basal or aluminum fluoride-stimulated formation of 3H-inositol phosphates in sodium-free medium. These results suggest that an increase in intracellular calcium, via disruption of Na+/Ca2+ exchange or depolarization-induced calcium influx, may explain previous demonstrations that agents that stimulate Na+ influx can also stimulate phosphoinositide hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
49.
Pretreatment of rat brain membranes at pH 4.5 before assay at pH 7.4 modifies the function of GTP-binding proteins (G-proteins) by eliminating Gs-stimulated adenylate cyclase activity while increasing opiate-inhibited adenylate cyclase activity. To help characterize the molecular nature of the low pH effect, we labeled Gs and Gi alpha-subunits in both control and low pH-pretreated membranes with the GTP photoaffinity analog [32P]P3 (4-azidoanilido)-P1-5'-GTP ([32P]AAGTP). When membranes were preincubated with unlabeled AAGTP, a persistent inhibitory state of adenylate cyclase was produced, which was overcome in untreated membranes with high (greater than 1 microM) concentrations of guanylyl-5'-imidodiphosphate [Gpp(NH)p]. In low pH-pretreated membranes, this inhibition could not be overcome, and stimulation by Gpp(NH)p was eliminated. Maximal inhibition of adenylate cyclase achieved by incubation with AAGTP was not altered by low pH pretreatment. Incorporation of [32P]AAGTP into Gs (42 kilodaltons) or Gi/o (40 kilodaltons) was unaffected by low pH pretreatment; however, transfer of 32P from Gi/o to Gs, which occurs with low (10 nM) concentrations of Gpp(NH)p in untreated membranes, was severely retarded in low pH-pretreated membranes. Both the potency and efficacy of Gpp(NH)p in producing exchange of [32P]AAGTP from Gi/o to Gs were markedly reduced by low pH pretreatment. These results correlate the loss of Gs-stimulated adenylate cyclase with a loss of transfer of nucleotide from Gi/o to Gs alpha-subunits and suggest that the nucleotide exchange participates in the modulation of neuronal adenylate cyclase.  相似文献   
50.
The interrelation of palmitate oxidation with amino acid formation in rat brain mitochondria has been investigated in purified mitochondria of nonsynaptic origin by measuring the formation of aspartate, -ketoglutarate, and glutamate during palmitate oxidation, and also by assaying14C-products of [1-14C]palmitate oxidation. Oxidation of palmitate (or [1-14C]palmitate) resulted in the formation of aspartate (or14C-aspartate), and the oxidation was inhibited by aminooxyacetate (an inhibitor of transaminase), Palmitate oxidation also resulted in -ketoglutarate formation, which was sensitive to the effect of aminooxyacetate. Addition of NH4Cl was found to increase14C-products and formation of -ketoglutarate, whereas glutamate formation was not increased unless the rate of palmitate oxidation was reduced by 50% by aminooxyacetate or -ketoglutarate was added exogenously. Exogenous -ketoglutarate was found to decrease14C-products, but not aspartate formation. These results indicated that palmitate oxidation was closely related to aspartate formation via aspartate aminotransferase. During palmitate oxidation without aminooxyacetate or added -ketoglutarate, however, -ketoglutarate was not available for glutamate formation via glutamate dehydrogenase. We discuss the possibility that this was because (a) oxidative decarboxylation of -ketoglutarate to form succinyl-CoA was favored over glutamate formation for the competition for -ketoglutarate in the same pool, and (b) the pool of -ketoglutarate produced in the aspartate aminotransferase reaction did not serve as substrate for glutamate formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号