首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67432篇
  免费   4848篇
  国内免费   3677篇
  75957篇
  2024年   86篇
  2023年   824篇
  2022年   1393篇
  2021年   1645篇
  2020年   1530篇
  2019年   1996篇
  2018年   1983篇
  2017年   1487篇
  2016年   1654篇
  2015年   2288篇
  2014年   3520篇
  2013年   4799篇
  2012年   2572篇
  2011年   3387篇
  2010年   2768篇
  2009年   3479篇
  2008年   3725篇
  2007年   3680篇
  2006年   3420篇
  2005年   3337篇
  2004年   2960篇
  2003年   2645篇
  2002年   2444篇
  2001年   1600篇
  2000年   1369篇
  1999年   1457篇
  1998年   1487篇
  1997年   1255篇
  1996年   1015篇
  1995年   1142篇
  1994年   1062篇
  1993年   932篇
  1992年   869篇
  1991年   620篇
  1990年   522篇
  1989年   497篇
  1988年   497篇
  1987年   448篇
  1986年   391篇
  1985年   502篇
  1984年   622篇
  1983年   465篇
  1982年   469篇
  1981年   307篇
  1980年   246篇
  1979年   209篇
  1978年   114篇
  1977年   67篇
  1976年   59篇
  1975年   37篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
61.
The present study shows that Langerhans cells can be differentiated from Interdigitating cells at the light microscopic level. Superficial lymph nodes and skin taken from necropsies and the lymph nodes of dermatopathic lymphadenopathy (DPL) were used for this experiment. Sections of lymph node and skin were embedded using the acetone, methyl benzoate and xylene (AMeX) method and dendritic cells were immunostained with anti S-100 protein antibody (S-100, and OKT-6 (CD1a) using the restaining method. Langerhans cells in the skin were positive for both CD1a and S-100. Dendritic cells positive for both CD1a and S-100, and dendritic cells positive for S-100, but not for CD1a were observed in superficial lymph nodes. In normal superficial lymph nodes, there were more interdigitating cells than Langerhans cells. The majority of the dendritic cells in the DPL were Langerhans cells. We conclude that the S-100 and CD1a positive cells are Langerhans cells, and the S-100 positive-CD1a negative cells are interdigitating cells.  相似文献   
62.
63.
rap-1A, an anti-oncogene-encoded protein, is aras-p21-like protein whose sequence is over 80% homologous to p21 and which interacts with the same intracellular target proteins and is activated by the same mechanisms as p21, e.g., by binding GTP in place of GDP. Both interact with effector proteins in the same region, involving residues 32–47. However, activated rap-1A blocks the mitogenic signal transducing effects of p21. Optimal sequence alignment of p21 and rap-1A shows two insertions of rap-1A atras positions 120 and 138. We have constructed the three-dimensional structure of rap-1A bound to GTP by using the energy-minimized three-dimensional structure ofras-p21 as the basis for the modeling using a stepwise procedure in which identical and homologous amino acid residues in rap-1A are assumed to adopt the same conformation as the corresponding residues in p21. Side-chain conformations for homologous and nonhomologous residues are generated in conformations that are as close as possible to those of the corresponding side chains in p21. The entire structure has been subjected to a nested series of energy minimizations. The final predicted structure has an overall backbone deviation of 0.7 å from that ofras-p21. The effector binding domains from residues 32–47 are identical in both proteins (except for different side chains of different residues at position 45). A major difference occurs in the insertion region at residue 120. This region is in the middle of another effector loop of the p21 protein involving residues 115–126. Differences in sequence and structure in this region may contribute to the differences in cellular functions of these two proteins.  相似文献   
64.
Dienelactone hydrolase (DLH), an enzyme from the β-ketoadipate pathway, catalyzes the hydrolysis of dienelactone to maleylacetate. Our inhibitor binding studies suggest that its substrate, dienelactone, is held in the active site by hydrophobic interactions around the lactone ring and by the ion pairs between its carboxylate and Arg-81 and Arg-206. Like the cysteine/serine proteases, DLH has a catalytic triad (Cys-123, His-202, Asp-171) and its mechanism probably involves the formation of covalently bound acyl intermediate via a tetrahedral intermediate. Unlike the proteases, DLH seems to protonate the incipient leaving group only after the collapse of the first tetrahedral intermediate, rendering DLH incapable of hydrolyzing amide analogues of its ester substrate. In addition, the triad His probably does not protonate the leaving group (enolate) or deprotonate the water for deacylation; rather, the enolate anion abstracts a proton from water and, in doing so, supplies the hydroxyl for deacylation. © 1993 Wiley-Liss, Inc.  相似文献   
65.
Band 3 protein extracted from human erythrocyte membranes by Triton X-100 was recombined with the major classes of phospholipid occurring in the erythrocyte membrane. The resulting vesicle systems were characterized with respect to recoveries, phospholipid composition, protein content and vesicle size as well as capacity and activation energy of sulfate transport. Transport was classified into band-3-specific fluxes and unspecific permeability by inhibitors. Transport numbers (sulfate ions per band 3 per minute) served as a measure of functional recovery after reconstitution. The transport properties of band 3 proved to be insensitive to replacement of phosphatidylcholine by phosphatidylethanolamine, while sphingomyelin and phosphatidylserine gradually inactivated band-3-specific anion transport when present at mole fractions exceeding 30 mol%. The activation energy of transport remained unaltered in spite of the decrease in transport numbers. The results, which are discussed in terms of requirements of band 3 protein function with respect to the fluidity and surface charge of its lipid environment, provide a new piece of evidence that the transport function of band 3 protein depends on the properties of its lipid environment just as the catalytic properties of some other membrane enzymes. The well-established species differences in anion transport (Gruber, W. and Deuticke, B. (1973) J. Membrane Biol. 13, 19–36) may to some extent reflect this lipid dependence.  相似文献   
66.
67.
The interaction of jatrophone with sRNA from Escherichia coli has been investigated through UV, CD, and 1H NMR measurements. The results obtained show that the interaction with jatrophone increases the stability of the polynucleotide. It appears that the optical properties of jatrophone depend upon the jatrophone/nucleotide ratio. The observed behaviour can only be explained by the existence of different types of interaction between jatrophone and sRNA. Even for a jatrophone/nucleotide ratio as low as 0.17 the 1H NMR spectra show a multiplicity of resonances that can only be explained by the simultaneous existence of two different binding modes involving the jatrophone molecules.  相似文献   
68.
A new protein crosslinking agent, 2,3-dibromopropionyl-N-hydroxysuccinimide ester, has been synthesized and characterized. The potential use of this compound as a temperature-controllable heterobifunctional crosslinking agent has been investigated using model systems and its reactivity compared with that of chlorambucil-N-hydroxysuccinimide ester. The coupling of14C-labeled phenylethylamine to lysozyme has been used to illustrate the feasibility of the use of this crosslinking agent for the synthesis of immunotoxins.  相似文献   
69.
Several hundred proteins have been resolved on two-dimensional gels of extracts of [35S]methionine-labeled adult Drosophila melanogaster. 27 of these polypeptides disappear from the gel pattern after feeding the K+ ionophore nonactin. These proteins have been identified as mitochondrial, since the two-dimensional gel pattern of extracts of isolated mitochondria correlates well with the pattern of the proteins missing from that of nonactin-treated flies. Nine new proteins also appear on the two-dimensional gels of the extracts from the nonactin-treated flies. Apparently, these nine proteins are precursors of the mature mitochondrial forms. These particular data support the concept that processing of many of the cytoplasmically synthesized mitochondrial proteins requires a specific membrane potential, and that some of these proteins are modified intramitochondrially. However, using [35S]methionine incorporation techniques, not all labeled polypeptides disappear from mitochondria during such treatment. Feeding similarly radiolabeled flies with chloramphenicol, an inhibitor of mitochondrial protein synthesis, results in the disappearance of only one protein from the gel pattern with the concurrent appearance of a ‘new’ high-molecular-weight polypeptide. Collectively, these data show that a specific group of [35S]methionine-labeled mitochondrial proteins can be identified by selective inhibition of mitochondrial function in whole cell protein maps of adult D. melanogaster.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号