首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   888篇
  免费   88篇
  国内免费   57篇
  2024年   4篇
  2023年   12篇
  2022年   11篇
  2021年   22篇
  2020年   38篇
  2019年   39篇
  2018年   38篇
  2017年   45篇
  2016年   46篇
  2015年   28篇
  2014年   36篇
  2013年   64篇
  2012年   42篇
  2011年   37篇
  2010年   37篇
  2009年   50篇
  2008年   59篇
  2007年   45篇
  2006年   39篇
  2005年   42篇
  2004年   26篇
  2003年   30篇
  2002年   24篇
  2001年   23篇
  2000年   21篇
  1999年   13篇
  1998年   16篇
  1997年   7篇
  1996年   12篇
  1995年   7篇
  1994年   12篇
  1993年   12篇
  1992年   13篇
  1991年   20篇
  1990年   7篇
  1989年   2篇
  1988年   7篇
  1986年   5篇
  1985年   10篇
  1984年   4篇
  1982年   9篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1953年   1篇
排序方式: 共有1033条查询结果,搜索用时 31 毫秒
131.
In the Laurentian Great Lakes, phytoplankton growth and biomass are secondarily limited by silica (Si), as a result of phosphorus (P) enrichment. Even modest levels of P enrichment can induce secondary Silimitation, which, in turn, promotes a shift from the native diatom phytoplankton flora to chlorophyte and cyanobacteria species. However, very little is known about the nutritional status of benthic populations and their response to nutrient enrichment. Two experiments were performed in the littoral zone of Lake Michigan where nutrients were delivered to in situ benthic algal (episammic and epilithic) assemblages using nutrient‐diffusing substrata. In order to test the hypothesis that benthic algae in Lake Michigan are Si limited, a 2 × 3 factorial experiment was used to deliver all combinations of Si, N, and P to resident assemblages growing on artificial substrata composed of natural (Si rich) versus calcium carbonate (Si poor) sand. A second experiment utilized a serial enrichment to evaluate the role of Si in mediating changes in taxonomic composition. These findings indicate that benthic algae in Lake Michigan exhibit signs of secondary Si limitation, and that their response to enrichment is similar to the phytoplankton. Moreover, natural sand substrata may provide a source of Si to resident benthic algae.  相似文献   
132.
Aim Predictive models of species occurrence have potential for prioritizing areas for competing land uses. Before widespread application, however, it is necessary to evaluate performance using independent data and effective accuracy measures. The objectives of this study were to (1) compare the effects of species occurrence rate on model accuracy, (2) assess the effects of spatial and temporal variation in occurrence rate on model accuracy, and (3) determine if the number of predictor variables affected model accuracy. Location We predicted the distributions of breeding birds in three adjacent mountain ranges in the Great Basin (Nevada, USA). Methods For each of 18 species, we developed separate models using five different data sets — one set for each of 2 years (to address the effects of temporal variation), and one set for each of three possible pairs of mountain ranges (to address the effects of spatial variation). We evaluated each model with an independent data set using four accuracy measures: discrimination ability [area under a receiver operating characteristic curve (AUC)], correct classification rate (CCR), proportion of presences correctly classified (sensitivity), and proportion of absences correctly classified (specificity). Results Discrimination ability was not affected by occurrence rate, whereas the other three accuracy measures were significantly affected. CCR, sensitivity and specificity were affected by species occurrence rate in the evaluation data sets to a greater extent than in the model‐building data sets. Discrimination ability was the only accuracy measure affected by the number of variables in a model. Main conclusions Temporal variation in species occurrence appeared to have a greater impact than did spatial variation. When temporal variation in species distributions is great, the relative costs of omission and commission errors should be assessed and long‐term census data should be examined before using predictive models of occurrence in a management setting.  相似文献   
133.
The effects of caterpillar food supply on the breeding performance of a population of the Japanese great tit Parus major minor were investigated. Since more than 90% of the food items in our study site were caterpillars living on trees, we estimated the food availability using 20 frass traps per hectare. The sampling error of this method was about 10% on average, which was accurate enough to detect differences between territories. Food abundance at laying in each territory affected the timing of egg laying. However, food amount after hatching was correlated with clutch size. No relationship was found between fledgling quality and food availability, probably because the effects of local variation in food abundance could be canceled out by parental effort such as extending the foraging area. There was a significant negative correlation between the length of the nestling period and food availability. We suggest that parent tits decide the timing of fledging at the point where two factors, predation risk before fledging and additional improvement of nestling quality, are balanced. Food availability just after fledging affected the length of post-fledging parental care; it seems that fledglings in “poor” territories would have had difficulty in finding food and hence needed to depend on their parents longer than those in “rich” territories. Received: 10 June 1997 / Accepted: 29 December 1997  相似文献   
134.
135.
136.
测定大兴安岭林区不同火烧年限(火后4、14、40、70和120年内未火烧)、不同坡度(坡地、平地)凋落物和土壤C、N、P含量及其化学计量比,分析火烧对凋落物和土壤养分的长期影响及两者之间的关系.结果表明: 不同火烧年限凋落物和土壤C、N、P化学计量特征差异显著,凋落物C含量变化不大.凋落物N、P含量随火烧年限的增加而增加,在火后4和14年较低,在火后40年恢复到对照(未火烧)水平.凋落物C∶N和C∶P值随火烧年限增加而下降,N∶P值则呈上升趋势.土壤C、N、P含量及其比值随土层深度增加而降低.坡地土壤C含量随火烧年限增加而增加,在火后70年显著高于对照,在平地差异不显著.火烧年限和坡度的交互作用影响土壤P含量和C∶P值.坡地土壤P含量在火后4年高于对照,而平地在火后40年高于对照;坡地C∶P值在火后14年达到对照水平,而平地与对照差异不显著.冗余分析表明,有机质层土壤的坡度效应大于年限效应,矿质层土壤主要受年限效应影响.火后4和14年凋落物及土壤养分含量低于对照,随着火烧年限的增加,植被生长迅速同时凋落物分解加快,凋落物质量及土壤养分质量不断提高,在火后40年恢复到未火烧水平,趋于稳定状态.  相似文献   
137.
Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no‐take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short‐distance larval dispersal within regions (200 m to 50 km) and long‐distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best‐fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long‐distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.  相似文献   
138.
This study investigated the effects of elevated temperature on shell density and Mg‐ATPase activity of Amphistegina lobifera. This species is abundant in shallow reef habitats, and can be vulnerable to daily physicochemical fluctuations. To assess potential responses and acclimation mechanisms of A. lobifera to changing temperature conditions, we performed a blocked‐design experiment exposing specimens collected from different reef sites (inshore and offshore) to three temperature treatments (Control: 24 °C, + 2 °C: 26 °C and + 5 °C: 29 °C) for 30 days. The final size and shell density of inshore reef foraminifera were unaffected by elevated temperature, and the enzyme activity in these individuals showed that they were able to acclimate to new temperature conditions. In contrast, offshore A. lobifera were more sensitive to changes in temperature, and heat stress caused growth impairment and inhibited Mg‐ATPase activity. However, newly added chambers were not affected. These results suggested that Mg‐ATPase plays an important role in regulating intracellular Mg2+ ions, but has little influence in the onset of calcification in A. lobifera. Moreover, it suggests that even though A. lobifera can regulate intracellular functions, local habitat seems to play a crucial role in determining how foraminifera respond to environmental changes.  相似文献   
139.
The Inter-Tribal Fisheries and Assessment Program (ITFAP) of the Chippewa Ottawa Resource Authority (CORA) in Sault Ste. Marie, Michigan, has been monitoring contaminant concentrations in the fillet portions of lake trout (Salvelinus namaycush) and lake whitefish (Coregonus clupeaformis) from the waters of lakes Superior, Huron, and Michigan since 1991. The primary purpose of this article is to present a risk quantification of methylmercury (MeHg) that is adjusted for nutritional benefit, originally presented by Ginsberg and Toal (2009 Ginsberg GL and Toal BF. 2009. Quantitative approach for incorporating methylmercury risks and omega-3 fatty acid benefits in developing species-specific fish consumption advice. Environ Health Perspect 117:26775[Crossref], [PubMed], [Web of Science ®] [Google Scholar], 2015) on trends in contaminant concentrations in fillet portions of these commercial fish that we recently reported in Dellinger et al. (2014 Dellinger JA, Moths MD, Dellinger M, et al. 2014. Contaminant trends in freshwater fish from the Great Lakes: A 20 year analysis. Hum Ecol Risk Assess 20:46178[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]). Both species of fish caught by tribal fishermen showed clear benefits to cardiovascular health and infant neurodevelopment if consumed at a rate of six ounces per week. However, other popularly consumed fish such as cod, tuna, and tilapia are estimated to have only marginal benefit or net negative effects on cardiovascular health and infant neurodevelopment. This dynamic assessment of benefits and risks further demonstrates the importance of traditionally caught fish in tribal health.  相似文献   
140.
Elevated CO2 and warming may alter terrestrial ecosystems by promoting invasive plants with strong community and ecosystem impacts. Invasive plant responses to elevated CO2 and warming are difficult to predict, however, because of the many mechanisms involved, including modification of phenology, physiology, and cycling of nitrogen and water. Understanding the relative and interactive importance of these processes requires multifactor experiments under realistic field conditions. Here, we test how free‐air CO2 enrichment (to 600 ppmv) and infrared warming (+1.5 °C day/3 °C night) influence a functionally and phenologically distinct invasive plant in semi‐arid mixed‐grass prairie. Bromus tectorum (cheatgrass), a fast‐growing Eurasian winter annual grass, increases fire frequency and reduces biological diversity across millions of hectares in western North America. Across 2 years, we found that warming more than tripled B. tectorum biomass and seed production, due to a combination of increased recruitment and increased growth. These results were observed with and without competition from native species, under wet and dry conditions (corresponding with tenfold differences in B. tectorum biomass), and despite the fact that warming reduced soil water. In contrast, elevated CO2 had little effect on B. tectorum invasion or soil water, while reducing soil and plant nitrogen (N). We conclude that (1) warming may expand B. tectorum's phenological niche, allowing it to more successfully colonize the extensive, invasion‐resistant northern mixed‐grass prairie, and (2) in ecosystems where elevated CO2 decreases N availability, CO2 may have limited effects on B. tectorum and other nitrophilic invasive species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号