首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   775篇
  免费   103篇
  国内免费   28篇
  2023年   11篇
  2022年   13篇
  2021年   13篇
  2020年   22篇
  2019年   22篇
  2018年   23篇
  2017年   40篇
  2016年   33篇
  2015年   36篇
  2014年   42篇
  2013年   28篇
  2012年   19篇
  2011年   27篇
  2010年   14篇
  2009年   32篇
  2008年   48篇
  2007年   54篇
  2006年   35篇
  2005年   37篇
  2004年   50篇
  2003年   37篇
  2002年   33篇
  2001年   23篇
  2000年   21篇
  1999年   21篇
  1998年   12篇
  1997年   13篇
  1996年   19篇
  1995年   12篇
  1994年   10篇
  1993年   14篇
  1992年   15篇
  1991年   9篇
  1990年   9篇
  1989年   6篇
  1988年   9篇
  1987年   9篇
  1986年   7篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1975年   2篇
排序方式: 共有906条查询结果,搜索用时 93 毫秒
71.
72.
Understanding the processes that lead to species extinctions is vital for lessening pressures on biodiversity. While species diversity, presence and abundance are most commonly used to measure the effects of human pressures, demographic responses give a more proximal indication of how pressures affect population viability and contribute to extinction risk. We reviewed how demographic rates are affected by the major anthropogenic pressures, changed landscape condition caused by human land use, and climate change. We synthesized the results of 147 empirical studies to compare the relative effect size of climate and landscape condition on birth, death, immigration and emigration rates in plant and animal populations. While changed landscape condition is recognized as the major driver of species declines and losses worldwide, we found that, on average, climate variables had equally strong effects on demographic rates in plant and animal populations. This is significant given that the pressures of climate change will continue to intensify in coming decades. The effects of climate change on some populations may be underestimated because changes in climate conditions during critical windows of species life cycles may have disproportionate effects on demographic rates. The combined pressures of land‐use change and climate change may result in species declines and extinctions occurring faster than otherwise predicted, particularly if their effects are multiplicative.  相似文献   
73.
The common military explosives 2-methyl-1,3,5-trinitrobenzene (TNT), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) are distributed in many military training areas, and are thus encountered by grazing animals. The aim of this study was to examine small ruminant's intake of forage contaminated with explosives. An indoor, experimental setup was used to determine if contamination of forage by these compounds affected intake by sheep. The results clearly demonstrate that contamination by any of the three explosives reduced forage intake in sheep; in order of increasing avoidance: RDX < TNT < HMX. The results are discussed in a risk assessment context.  相似文献   
74.
We isolated eleven strains of the harmful algal bloom (HAB)-forming dinoflagellate Karlodinium veneficum during a bloom event in the NW Mediterranean coastal waters and we studied the inter-strain variability in several of their physiological and biochemical traits. These included autotrophic growth parameters, feeding capabilities (mixotrophy), lipid composition, and, in some cases, their responses to biotic and abiotic factors. The strains were found to differ in their growth rates (0.27–0.53 d−1) and in the maximum cell concentrations achieved during stationary phase (6.1 × 104–8.6 × 104 cells mL−1). Their ingestion performance, when offered Rhodomonas salina as prey, was also diverse (0.22–1.3 cells per K. veneficum per day; 8–52% of their daily ration). At least two strains survived for several months under strict heterotrophic conditions (no light, low inorganic nutrients availability, and R. salina as food source). These strains also showed very distinct fatty acid compositions, with very low contents of monounsaturated and polyunsaturated fatty acids. According to a Bray Curtis similarity analysis, three or four strain groups able to perform different roles in bloom development were identified. We further analyzed one strain from each of the two most distinct groups with respect to prey concentration, light intensity, nutrient availability, and we determined the functional responses (growth and feeding rates) to food concentration. Taken together, the results served to highlight the role of mixotrophy and clone variability in the formation of HABs.  相似文献   
75.
76.
77.
A modified fluorescence in situ hybridization (FISH) method was used to analyze bacterial prey composition in protistan food vacuoles in both laboratory and natural populations. Under laboratory conditions, we exposed two bacterial strains (affiliated with beta- and gamma-Proteobacteria -- Aeromonas hydrophila and Pseudomonas fluorescens, respectively) to grazing by three protists: the flagellates Bodo saltans and Goniomonas sp., and the ciliate Cyclidium glaucoma. Both flagellate species preferably ingested A. hydrophila over P. fluorescens, while C. glaucoma showed no clear preferences. Differences were found in the digestion of bacterial prey with B. saltans digesting significantly faster P. fluorescens compared to two other protists. The field study was conducted in a reservoir as part of a larger experiment. We monitored changes in the bacterial prey composition available compared to the bacteria ingested in flagellate food vacuoles. Bacteria detected by probe HGC69a (Actinobacteria) and R-BT065 were negatively selected by flagellates. Bacteria detected by probe CF319a were initially positively selected but along with a temporal shift in bacterial cell size, this trend changed to negative selection during the experiment. Overall, our analysis of protistan food vacuole content indicated marked effects of flagellate prey selectivity on bacterioplankton community composition.  相似文献   
78.
Gauslaa Y 《Oecologia》2005,143(1):94-105
Lichens are well-suited organisms for experimental herbivory studies because their secondary compounds, assumed to deter grazing, can be non-destructively extracted. Thalli of 17 lichen species from various habitats were cut in two equal parts; compounds were extracted from one part by acetone, the other served as a control. These two pieces were offered as a paired choice to the generalist herbivore snail Cepaea hortensis. Control thalli of all lichens were consumed at a low rate regardless of their investments in acetone-extractable lichen compounds; naturally compound-deficient lichen species were not preferred compared to those with high contents. However, for extracted thalli, there was a highly significant positive correlation between rate of consumption and the extracted compound contents. These data imply that herbivore defence has evolved in different directions in different lichens. Studied members of Parmeliaceae, common in oligotrophic habitats, have high contents of carbon-rich acetone-soluble compounds; these lichens became highly palatable to snails subsequent to acetone rinsing. Extracted lichen compounds were applied to pieces of filter paper and fed to snails. Extracts from members of the Parmeliaceae significantly deterred feeding on paper. Such data suggest that generalist herbivores may have shaped evolution in the widespread and highly diverse Parmeliaceae towards high investments in lichen compounds. On the other hand, lichens belonging to the Physciaceae and Teloschistales, common in nutrient-enriched habitats, are deficient in, or have low concentrations of, lichen compounds. Such lichens did not become more palatable after acetone rinsing. The orange anthraquinone compound parietin, restricted to the Teloschistales, and which has previously been found to protect against excess light, did not deter grazing.  相似文献   
79.
We hypothesized that the trophic level of marine copepods should depend on the composition of the protist community. To test this hypothesis, we manipulated the phytoplankton composition in mesocosms and measured grazing rates of copepods and mesozooplankton in those mesocosms. Twelve mesocosms with Northeast Atlantic phytoplankton were fertilised with different Si:N ratios from 0:1 to 1:1. After 1 week, ten of the mesocosms were filled with natural densities of mesozooplankton, mainly calanoid copepods, while two remained as mesozooplankton-free controls. Both before and after the addition of copepods there was a positive correlation of diatom dominance with Si:N ratios. During the second phase of the experiment, copepod and microzooplankton grazing rates on different phytoplankton species were assessed by a modification of the Landry-Hassett dilution technique, where the bottles containing the different dilution treatments were replaced by dialysis bags incubated in situ. The results indicated no overlap in the food spectrum of microzooplankton (mainly ciliates) and copepods. Ciliates fed on nanoplankton, while copepods fed on large or chain-forming diatoms, naked dinoflagellates, and ciliates. The calculated trophic level of copepods showed a significantly negative but weak correlation with Si:N ratios. The strength of this response was strongly dependent on the trophic levels assumed for ciliates and mixotrophic dinoflagellates.  相似文献   
80.
In a clear and a turbid freshwater lake the biomasses of phytoplankton, periphytic algae and periphytonassociated macrograzers were followed in enclosures with and without fish (Rutilus rutilus) and four light levels (100%, 55%, 7% and < 1% of incoming light), respectively. Fish and light affected the biomass of primary producers and the benthic grazers in both lakes. The biomass of primary producers was generally higher in the turbid than the clear lake, and in both lakes fish positively affected the biomass, while shading reduced it. Total biomass of benthic grazing invertebrates was higher in the clear than in the turbid lake and the lakes were dominated by snails and chironomids + ostracods, respectively. While light had no effect on the biomass of grazers in the clear lake, snail breeding was delayed in the most shaded enclosures and presence of fish reduced the number of snails and the total biomass of grazers. In the turbid lake ostracod abundance was not influenced by light, but was higher in fish-free enclosures. Density of chironomids correlated positively with periphyton biomass in summer, while fish had no effect. Generally, light-mediated regulation of primary producers was stronger in the turbid than in the clear lake, but the regulation did not nambiguously influence the primary consumers. However, regulation by fish of the benthic grazer community was stronger in the clear than in the turbid lake, and in both lakes strong top-down effects on periphyton were seen. The results indicate that if present-day climate in Denmark in the future is found in coastal areas at higher latitudes, the effect of lower light during winter in such areas will be highest in clear lakes, with typically lower fish biomass and higher invertebrate grazer density.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号