首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   775篇
  免费   103篇
  国内免费   28篇
  2023年   11篇
  2022年   13篇
  2021年   13篇
  2020年   22篇
  2019年   22篇
  2018年   23篇
  2017年   40篇
  2016年   33篇
  2015年   36篇
  2014年   42篇
  2013年   28篇
  2012年   19篇
  2011年   27篇
  2010年   14篇
  2009年   32篇
  2008年   48篇
  2007年   54篇
  2006年   35篇
  2005年   37篇
  2004年   50篇
  2003年   37篇
  2002年   33篇
  2001年   23篇
  2000年   21篇
  1999年   21篇
  1998年   12篇
  1997年   13篇
  1996年   19篇
  1995年   12篇
  1994年   10篇
  1993年   14篇
  1992年   15篇
  1991年   9篇
  1990年   9篇
  1989年   6篇
  1988年   9篇
  1987年   9篇
  1986年   7篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1975年   2篇
排序方式: 共有906条查询结果,搜索用时 15 毫秒
61.
We tested the influence of grazing intensity and effect of landscape complexity on grassland specialist and generalist beetles of three beetle families, i.e. Carabidae, Chrysomelidae, and Curculionidae, on extensively and intensively grazed cattle pastures in three regions of the Hungarian Great Plain. In every region we investigated seven pairs of grazed grasslands. On each field, samples were taken along two 95-m-long transects; one transect at the edge and the other one 50 m away from the edge in the grassland interior (altogether 84 transects). Carabids (Carabidae) were sampled using funnel traps for three 2-week sampling periods during spring and early summer. Leaf-beetles (Chrysomelidae) and weevils (Curculionidae) were surveyed by sweep netting in May and June 2003. Analysing the grazing intensity and landscape complexity effects on generalist and specialist beetles with linear mixed models, grazing effect was detected only on specialist leaf-beetle species richness with more species in the extensively grazed sites. Landscape complexity had contrasting effects on specialist and generalist species. Habitat generalists were more and negatively affected by increasing grassland coverage (reduced heterogeneity) than specialists. At species level analyses on four species out of 21, landscape effects were shown, which suggested that landscape composition might have strong effects on the species composition of the beetle assemblages. Our results suggest that conservation of biodiversity in agricultural systems (such as in managed Central European grasslands) requires a landscape perspective besides investigating management effects.  相似文献   
62.
Global biodiversity is decreasing as a result of human activities. In many parts of the world, this decrease is due to the destruction of natural habitats. The European perspective is different. Here, traditional agricultural landscapes developed into species-rich habitats. However, the European biodiversity heritage is strongly endangered. One of the countries where this biodiversity is best preserved is Romania. We analyse the possible changes in Romania's land-use patterns and their possible benefits and hazards with respect to biodiversity. As model group, we used butterflies, whose habitat requirements are well understood. We determined the ecological importance of different land-use types for the conservation of butterflies, underlining the special importance of Romania's semi-natural grasslands for nature conservation. We found that increasing modern agriculture and abandonment of less productive sites both affect biodiversity negatively — the former immediately and the latter after a lag phase of several years. These perspectives are discussed in the light of the integration of Romania into the European Union.  相似文献   
63.
The aims of this study were to test the influence of grazing intensity, effects of local and landscape parameters, and regional effects on orthopteran assemblages. We made our investigations on extensively and intensively grazed cattle pastures in three regions of the Hungarian Great Plain. The regions differed in landscape complexity; one region was situated in a structurally simple landscape with large landscape units, one in a structurally complex landscape with marshy patches and trees in the grasslands and one in a landscape with intermediate structural complexity. In each region we had seven pairs of differently managed grasslands, which differed in grazing intensity. Grasshoppers were recorded once in July 2003 using sweepnet catches and visual and acoustic observations in two 95 m long transects at each site (84 transects in total). Botanical surveys and measurements of other local factors were also made for each transect. After samplings, we digitised the most important land-use types using aerial photographs to produce landscape scale parameters within 100 and 500 m circles around every site. Analysing the management, regional, landscape and local effects on species richness with linear mixed models, we showed only strong significant regional differences. Linear mixed models for Orthoptera abundance yielded significant regional effects and marginal management effects. However, after including local and landscape parameters in a separate model a marginal local effect was found instead of a management effect in addition to the significant regional effect. Logistic regression models of 15 species also revealed the importance of local factors, particularly the importance of grass height, which is highly dependent on grazing intensity. We conclude that management intensity has indirect effects on Orthoptera species richness and abundance. Landscape scale parameters are also important, at least for some species.  相似文献   
64.
Question: What is the impact of grazing regime on plant species abundance, plant growth form, plant productivity and plant nutrient concentrations in a forest steppe? Location: Hustai National Park in the forest steppe region of Mongolia. Methods: On the Stipa steppe we applied three different grazing regimes by using; (1) one type of exclosure which excluded grazing by large mammalian herbivores, mainly takh (Przewalski horse), (2) another type of exclosure that excluded both large and small (Siberian marmots) mammalian herbivores, and (3) control plots which were freely grazed. We measured species frequencies, tiller densities, plant biomass and nitrogen concentrations of the vegetation. Results: Exclusion from grazing by takh and marmots significantly increased plant standing crop, but marmot grazing and full grazing did not show significant differences. Protection from grazing decreased forage quality, shown by a lower N-concentration of the standing crop. However, this was solely the result of the lower live-dead ratio of the vegetation. The frequency of the rhizomatous Leymus chinensis decreased under reduced grazing, as did the frequency of the total of rhizomatous species. The frequency of Stipa krylovii increased under reduced grazing, as did its basal areas, tiller density and tussock height. Conclusion: Reduced grazing leads to a lower abundance of rhizomatous species and an increase in tussock species.  相似文献   
65.
Questions: What is the best grassland management regime for the threatened plant species Gladiolus imbricatus; is the stage structure of local populations a feasible indicator of the effect of changed management. Location: Coastal meadow system in southwestern Estonia. Methods : The effect of five management regimes was studied in a long‐term (three‐year) field experiment: (1) mowing in late July, (2) grazing by cattle, (3) grazing by sheep, (4) sheep grazing during the first year and mowing during subsequent years, (5) no management (control). Results: The population density increased significantly in response to the mowing treatment and to the mowing after sheep grazing treatment. The proportion of grazed plant individuals was higher in the sheep‐grazed than in the cattle‐grazed treatment. Generative and vegetative adult individuals of G. imbricatus were significantly more damaged by cattle herbivory than juveniles. All management regimes shifted the population structure towards a dynamic state where juvenile stages dominate, while the not managed control retained a regressive population structure. Conclusions: Population stage structure was a useful indicator of different management conditions, even in the case where population density did not differ. As indicated by population stage structure, the best management regime for G. imbricatus was either mowing in late July only, or alternation of grazing and mowing in different years.  相似文献   
66.
放牧干扰下高原鼢鼠栖息地选择因素   总被引:4,自引:1,他引:3  
以祁连山东段高寒草甸栖息的高原鼢鼠(Myospalax baileyi)为研究对象,探讨放牧干扰下高原鼢鼠适合栖息地选择的影响因素,为合理控制草原鼠害和保护生物多样性提供科学依据。在5个不同放牧强度小区中,连续3年监测高原鼢鼠相对种群密度变化,同时获取植被和土壤的变化数据。分析高原鼢鼠相对种群密度、植被(盖度、高度、频度、植被生物量、植被均匀度、丰富度、多样性和地下根系生物量)和土壤(紧实度、容重、水分)之间的关系。中度放牧干扰下,高原鼢鼠相对种群密度最低,不利于对栖息地的选择,轻度、次轻度放牧区的高原鼢鼠相对种群密度高于重度、次重度放牧区的;轻度放牧干扰的草地有利于高原鼢鼠种群数量的增加。高原鼢鼠相对种群密度与土壤紧实度、容重呈显著负相关(R=﹣0.921、﹣0.883,P0.05);与土壤水分呈显著正相关(R=0.879,P0.05);高原鼢鼠相对种群密度与地下根系生物量呈极显著正相关(R=0.982,P0.01),与植被丰富度呈显著正相关(R=0.921,P0.05),与地上植被总盖度呈显著正相关(R=0.909,P0.05),与地上生物量、均匀度、多样性呈不显著正相关(P0.05)。在草地放牧干扰系统中,非生物因素土壤紧实度、水分可能是高原鼢鼠栖息地选择的首要选择因素,食物资源也许是次要选择因素。  相似文献   
67.
Agro-ecosystems constitute essential habitat for many organisms. Agricultural intensification, however, has caused a strong decline of farmland biodiversity. Organic farming (OF) is often presented as a more biodiversity-friendly practice, but the generality of the beneficial effects of OF is debated as the effects appear often species- and context-dependent, and current research has highlighted the need to quantify the relative effects of local- and landscape-scale management on farmland biodiversity. Yet very few studies have investigated the landscape-level effects of OF; that is to say, how the biodiversity of a field is affected by the presence or density of organically farmed fields in the surrounding landscape. We addressed this issue using the metacommunity framework, with weed species richness in winter wheat within an intensively farmed landscape in France as model system. Controlling for the effects of local and landscape structure, we showed that OF leads to higher local weed diversity and that the presence of OF in the landscape is associated with higher local weed biodiversity also for conventionally farmed fields, and may reach a similar biodiversity level to organic fields in field margins. Based on these results, we derive indications for improving the sustainable management of farming systems.  相似文献   
68.
69.
The world's population is growing and demand for food, feed, fiber, and fuel is increasing, placing greater demand on land and its resources for crop production. We review previously published estimates of global scale cropland availability, discuss the underlying assumptions that lead to differences between estimates, and illustrate the consequences of applying different estimates in model‐based assessments of land‐use change. The review estimates a range from 1552 to 5131 Mha, which includes 1550 Mha that is already cropland. Hence, the lowest estimates indicate that there is almost no room for cropland expansion, while the highest estimates indicate that cropland could potentially expand to over three times its current area. Differences can largely be attributed to institutional assumptions, i.e. which land covers/uses (e.g. forests or grasslands) are societally or governmentally allowed to convert to cropland, while there was little variation in biophysical assumptions. Estimates based on comparable assumptions showed a variation of up to 84%, which originated mainly from different underlying data sources. On the basis of this synthesis of the assumptions underlying these estimates, we constructed a high, a medium, and a low estimate of cropland availability that are representative of the range of estimates in the reviewed studies. We apply these estimates in a land‐change model to illustrate the consequences on cropland expansion and intensification as well as deforestation. While uncertainty in cropland availability is hardly addressed in global land‐use change assessments, the results indicate a large range of estimates with important consequences for model‐based assessments.  相似文献   
70.
Current challenges to global food security require sustainable intensification of agriculture through initiatives that include more efficient use of nitrogen (N), increased protein self‐sufficiency through homegrown crops, and reduced N losses to the environment. Such challenges were addressed in a continental‐scale field experiment conducted over 3 years, in which the amount of total nitrogen yield (Ntot) and the gain of N yield in mixtures as compared to grass monocultures (Ngainmix) was quantified from four‐species grass–legume stands with greatly varying legume proportions. Stands consisted of monocultures and mixtures of two N2‐fixing legumes and two nonfixing grasses. The amount of Ntot of mixtures was significantly greater (P ≤ 0.05) than that of grass monocultures at the majority of evaluated sites in all 3 years. Ntot and thus Ngainmix increased with increasing legume proportion up to one‐third of legumes. With higher legume percentages, Ntot and Ngainmix did not continue to increase. Thus, across sites and years, mixtures with one‐third proportion of legumes attained ~95% of the maximum Ntot acquired by any stand and had 57% higher Ntot than grass monocultures. Realized legume proportion in stands and the relative N gain in mixture (Ngainmix/Ntot in mixture) were most severely impaired by minimum site temperature (R = 0.70, P = 0.003 for legume proportion; R = 0.64, P = 0.010 for Ngainmix/Ntot in mixture). Nevertheless, the relative N gain in mixture was not correlated to site productivity (P = 0.500), suggesting that, within climatic restrictions, balanced grass–legume mixtures can benefit from comparable relative gains in N yield across largely differing productivity levels. We conclude that the use of grass–legume mixtures can substantially contribute to resource‐efficient agricultural grassland systems over a wide range of productivity levels, implying important savings in N fertilizers and thus greenhouse gas emissions and a considerable potential for climate change mitigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号