首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   775篇
  免费   103篇
  国内免费   28篇
  2023年   11篇
  2022年   13篇
  2021年   13篇
  2020年   22篇
  2019年   22篇
  2018年   23篇
  2017年   40篇
  2016年   33篇
  2015年   36篇
  2014年   42篇
  2013年   28篇
  2012年   19篇
  2011年   27篇
  2010年   14篇
  2009年   32篇
  2008年   48篇
  2007年   54篇
  2006年   35篇
  2005年   37篇
  2004年   50篇
  2003年   37篇
  2002年   33篇
  2001年   23篇
  2000年   21篇
  1999年   21篇
  1998年   12篇
  1997年   13篇
  1996年   19篇
  1995年   12篇
  1994年   10篇
  1993年   14篇
  1992年   15篇
  1991年   9篇
  1990年   9篇
  1989年   6篇
  1988年   9篇
  1987年   9篇
  1986年   7篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1975年   2篇
排序方式: 共有906条查询结果,搜索用时 15 毫秒
101.
Abstract. A 44‐yr record of herbaceous vegetation change was analysed for three contrasting grazing regimes within a semi‐arid savanna to evaluate the relative contribution of confined livestock grazing and climatic variability as agents of vegetation change. Grazing intensity had a significant, directional effect on the relative composition of short‐ and mid‐grass response groups; their composition was significantly correlated with time since the grazing regimes were established. Interannual precipitation was not significantly correlated with response group composition. However, interannual precipitation was significantly correlated with total plant basal area while time since imposition of grazing regimes was not, but both interannual precipitation and time since the grazing regimes were established were significantly correlated with total plant density. Vegetation change was reversible even though the herbaceous community had been maintained in an altered state for ca. 60 yr by intensive livestock grazing. However, ca. 25 yr were required for the mid‐grass response group to recover following the elimination of grazing and recovery occurred intermittently. The increase in mid‐grass composition was associated with a significant decrease in total plant density and an increase in mean individual plant basal area. Therefore, we failed to reject the hypotheses based on the proportional change in relative response group composition with grazing intensity and the distinct effects of grazing and climatic variability on response group composition, total basal area and plant density. Long‐term vegetation change indicates that grazing intensity established the long‐term directional change in response group composition, but that episodic climate events defined the short‐term rate and trajectory of this change and determines the upper limit on total basal area. The occurrence of both directional and non‐directional vegetation responses were largely a function of (1) the unique responses of the various community attributes monitored and (2) the distinct temporal responses of these community attributes to grazing and climatic variation. This interpretation supports previous conclusions that individual ecosystems may exist in equilibrial and non‐equilibrial states at various temporal and spatial scales.  相似文献   
102.
103.
The impact of grazing by copepods on phytoplankton was studied during a seasonal cycle on the Galician shelf off A Coruña (NW Spain). Grazing was estimated by measuring the chlorophyll gut content and the evacuation rates of copepods from three mesh-size classes: 200-500 (small), 500-1000 (medium), and 1000-2000 μm (large). Between February 1996 and June 1997, monthly measurements of water temperature, chlorophyll concentration, primary production rates, and copepod abundance, chlorophyll gut content, and evacuation rates were taken at an 80-m-deep, fixed shelf station. Additionally, the same measurements were collected daily during two bloom events in March and in July 1996. Small copepods were the most abundant through the seasonal cycle. The highest grazing impact, however, was due to the medium and large size classes. Grazing by small copepods exceeded grazing by medium and large copepods only during phytoplankton spring blooms. The impact of copepod grazing (considering all size fractions) was generally low. On average, 2% of the phytoplankton biomass and 6% of the primary production were removed daily by the copepod community. Maximum grazing impact values (9% of the phytoplankton biomass and 39% of the primary production) were found in mid-summer. These results suggest that most of the phytoplankton biomass would escape direct copepod grazing in this upwelling area.  相似文献   
104.
A red algal turf is often found just below the barnacle/limpet zone of many European shores, especially on steep shores of moderate exposure. The hypothesis that grazing by limpets determines the upper limit of distribution of this red algal turf was tested on moderately exposed shores in Portugal and Britain. We also aimed to assess whether the grazing effect is modified at various spatial scales. Grazers were excluded by fences, with half-fenced and unfenced controls. Exclusion plots were rapidly colonised by green ephemeral algae in the months immediately after the beginning of the experiment (summer); these algae were later replaced by perennial algae. The percentage cover of turf-forming macroalgae showed a significant increase at both locations. The upper limit of distribution extended more than 50 cm on most of the shores studied. In contrast, control and half-fenced plots remained devoid of algae. After 2 years, ungrazed plots were mainly colonised by a red algal turf (e.g. Caulacanthus ustulatus, Gelidium spp., Laurencia pinnatifida) in Portugal, while canopy cover (Fucus serratus and Himanthalia elongata) dominated in Britain in marked contrast to the grazed plots. Physical factors acting at both local and geographical scales may explain these differences. However, although physical factors probably have an important influence on the identity, size and abundance of sublittoral fringe macroalgae, grazers play a major role in directly setting their upper limits. The effect of grazing by limpets was not consistent for all of the morphological algal groups and spatial scales considered in the present study. The effect of grazing on the cover of turf algae varied between Portugal and Britain (location scale), while effects on ephemeral and canopy algal cover varied at the shore scale within location.  相似文献   
105.
Abstract. We studied canopy structure, shoot architecture and light harvesting efficiencies of the species (photon flux captured per unit above‐ground plant mass) in a series of exclosures of different age (up to 4.5 yr) in originally heavily grazed grassland in N Japan.Vegetation height and Leaf Area Index (LAI) increased in the series and Zoysia japonica, the dominant in the beginning, was replaced by the much taller Miscanthus sinensis. We showed how this displacement in dominance can be explained by inherent constraints on the above‐ground architecture of these two species. In all stands light capture of plants increased with their above‐ground biomass but taller species were not necessarily more efficient in light harvesting. Some subordinate species grew disproportionally large leaf areas and persisted in the shady undergrowth. Some other species first grew taller and managed to stay in the better‐lit parts of the canopy, but ultimately failed to match the height growth of their neighbours in this early successional series. Their light harvesting efficiencies declined and this probably led to their exclusion. By contrast, species that maintained their position high in the canopy managed to persist in the vegetation despite their relatively low light harvesting efficiencies. In the tallest stands ‘later successional’ species had higher light harvesting efficiencies for the same plant height than ‘early successional’ species which was mostly the result of the greater area to mass ratio (specific leaf area, SLA) of their leaves. This shows how plant stature, plasticity in above‐ground biomass partitioning, and architectural constraints determine the ability of plants to efficiently capture light, which helps to explain species replacement in this early successional series.  相似文献   
106.
Abstract. To identify management treatments suitable for the conservation of extensively managed grasslands, the ‘Fallow experiments in Baden‐Württemberg’ were set up in 1975. In this investigation, species composition of the grazing, mowing, mulching, controlled burning and unmanaged (succession) treatments were analysed after 25 yr of continuous management in Arrhenatherum elatius and Bromus erectus grasslands. Through ordination analyses it was found that species composition is strongly dependent on the management treatment. The first axis, identified by ordination analysis, essentially corresponded to a gradient of decreasing disturbance frequency. Controlled burning resulted in a unique species composition. Grazing, mowing and mulching twice a year were found to be most suitable for the conservation of unimproved, species‐rich grasslands.  相似文献   
107.
Abstract. Due to economic pressures and policy changes Lolium perenne‐Trifolium repens sown swards in upland UK sheep systems are likely to become less intensively managed. We present results from the first 5 yr of a long‐term experiment studying vegetation change under more extensive grazing management at three sites. One treatment was representative of current, intensive management and 5 were unfertilized with different intensities of seasonal grazing. The species composition of unfertilized, ungrazed swards changed dramatically within 2 yr and the sown species had virtually disappeared by year 5. Ranunculus repens, Poa trivialis, Agrostis gigantea, Juncus spp. and Carex spp. became dominant at the wettest site. Grasses were dominant at the other sites. In contrast, the sown species were retained in the unfertilized, grazed treatments; there were small shifts in abundance of the species present initially and few additions or losses of species. Some colonizing species were present in the seed bank whereas others with a transient seed bank appeared to have invaded from neighbouring vegetation. Implications of these results for compensation schemes to reduce animal output and increase biodiversity are discussed.  相似文献   
108.
Abstract. Extensive areas in the mountain grasslands of central Argentina are heavily invaded by alien species from Europe. A decrease in biodiversity and a loss of palatable species is also observed. The invasibility of the tall‐grass mountain grassland community was investigated in an experiment of factorial design. Six alien species which are widely distributed in the region were sown in plots where soil disturbance, above‐ground biomass removal by cutting and burning were used as treatments. Alien species did not establish in undisturbed plots. All three types of disturbances increased the number and cover of alien species; the effects of soil disturbance and biomass removal was cumulative. Cirsium vulgare and Oenothera erythrosepala were the most efficient alien colonizers. In conditions where disturbances did not continue the cover of aliens started to decrease in the second year, by the end of the third season, only a few adults were established. Consequently, disturbances are needed to maintain alien populations in tall‐grass mountain grasslands. Burning also increased the species richness of native species. We conclude that an efficient way to control the distribution of alien species is to decrease grazing pressure while burning as a traditional management tool may be continued.  相似文献   
109.
Abstract. Responses of plant communities to mammalian herbivores vary widely, due to variation in plant species composition, herbivore densities, forage preferences, soils, and climate. In this study, we evaluated vegetation changes on 30 sites within and adjacent to the Sevilleta National Wildlife Refuge (SNWR) in central New Mexico, USA, over a 20‐yr period following removal of the major herbivores (livestock and prairie dogs) in 1972–1975. The study sites were established in 1976, and were resampled in 1986 and 1996 using line transect methods. At the landscape scale, repeated measures ANOVA of percentage cover measurements showed no significant overall net changes in total perennial plant basal cover, either with or without herbivores present; however, there was an overall increase in annual forbs and plant litter from 1976 to 1996. At the site scale, significant changes in species composition and dominance were observed both through time and across the SNWR boundary. Site histories varied widely, with sites dominated by Bouteloua eriopoda being the most dynamic and sites dominated by Scleropogon brevifolius being the most persistent. Species‐specific changes also were observed across multiple sites: B. eriopoda cover increased while Gutierrezia sarothrae greatly decreased. The non‐uniform, multi‐directional changes of the sites' vegetation acted to prevent detection of overall changes in perennial vegetation at the landscape level. Some sites displayed significant changes after removal of herbivores, while others appeared to respond primarily to climate dynamics. Certain species that were not preferred by livestock or prairie dogs, showed overall declines during drought periods, while other preferred species exhibited widespread increases during wetter periods regardless of herbivore presence. Therefore, the vegetation dynamics cannot be attributed solely to removal of herbivores, and in some cases can be explained by short‐ and long‐term fluctuations in climate. These results emphasize the variety of responses of sites with differences in vegetation to mammalian herbivores under otherwise similar climatic conditions, and illustrate the value of site‐ and landscape‐scale approaches to understanding the impacts of plant‐herbivore interactions.  相似文献   
110.
Joyce  Chris 《Plant Ecology》2001,155(1):47-60
Concerns over the relative stability or sensitivity of biologicallydiverse ecosystems in relation to environmental change include the effects ofland-use intensification on diverse plant communities. This paper examines thesensitivity of a floristically diverse flood-meadow under hay-cutting managementto nitrogen enrichment, this being a key component of intensified agriculturalmanagement. A gradient of fertilizer nitrogen treatments was applied to a sitein the Czech Republic in two successive seasons and plant community response wasmonitored using measures of species diversity, cover and above-ground primaryproduction. Results show that diversity was supported by annual hay-cuttingmanagement and that the community was highly sensitive to nitrogen enrichment.Fertilization at rates consistent with intensive agricultural practice reducedspecies richness significantly within eight weeks, with forbs and mossparticularly susceptible. The cover and biomass of some grasses were stimulatedby fertilization until constrained by litter accumulation. Over two seasons,fertilization significantly reduced species diversity and simplified communitystructure as inter-specific competitive relations shifted. Biologically diverseflood-meadows therefore seem to be vulnerable to agricultural intensificationand other human activities that promote enhanced nitrogen levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号