首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1894篇
  免费   208篇
  国内免费   98篇
  2024年   7篇
  2023年   35篇
  2022年   44篇
  2021年   74篇
  2020年   115篇
  2019年   102篇
  2018年   83篇
  2017年   75篇
  2016年   81篇
  2015年   89篇
  2014年   107篇
  2013年   158篇
  2012年   116篇
  2011年   98篇
  2010年   90篇
  2009年   102篇
  2008年   103篇
  2007年   84篇
  2006年   80篇
  2005年   78篇
  2004年   62篇
  2003年   61篇
  2002年   37篇
  2001年   49篇
  2000年   36篇
  1999年   27篇
  1998年   24篇
  1997年   27篇
  1996年   16篇
  1995年   20篇
  1994年   14篇
  1993年   14篇
  1992年   15篇
  1991年   18篇
  1990年   8篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   8篇
  1984年   9篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
  1974年   1篇
  1972年   1篇
排序方式: 共有2200条查询结果,搜索用时 15 毫秒
961.
962.
The genus Dietzia has only been established fairly recently. The Gram morphology and colony appearance of the species of this genus is remarkably similar to Rhodococcus equi . In the absence of simple, accurate methods for their identification, Dietzia spp. might have been misidentified as a Rhodococcus spp. and/or considered to be contaminants only. This MiniReview is designed to summarize current evidence on the clinical significance of Dietzia species, to consider their potential role as human pathogens, and to outline approaches that can be used to accurately classify and identify members of the genus, with the overall aim of alerting the medical microbiological community to a little known genus that contains clinically significant organisms.  相似文献   
963.
Vampirovibrio chlorellavorus is recognized as a pathogen of commercially‐relevant Chlorella species. Algal infection and total loss of productivity (biomass) often occurs when susceptible algal hosts are cultivated in outdoor open pond systems. The pathogenic life cycle of this bacterium has been inferred from laboratory and field observations, and corroborated in part by the genomic analyses for two Arizona isolates recovered from an open algal reactor. V. chlorellavorus predation has been reported to occur in geographically‐ and environmentally‐diverse conditions. Genomic analyses of these and additional field isolates is expected to reveal new information about the extent of ecological diversity and genes involved in host‐pathogen interactions. The draft genome sequences for two isolates of the predatory V. chlorellavorus (Cyanobacteria; Ca. Melainabacteria) from an outdoor cultivation system located in the Arizona Sonoran Desert were assembled and annotated. The genomes were sequenced and analyzed to identify genes (proteins) with predicted involvement in predation, infection, and cell death of Chlorella host species prioritized for biofuel production at sites identified as highly suitable for algal production in the southwestern USA. Genomic analyses identified several predicted genes encoding secreted proteins that are potentially involved in pathogenicity, and at least three apparently complete sets of virulence (Vir) genes, characteristic of the VirB‐VirD type system encoding the canonical VirB1‐11 and VirD4 proteins, respectively. Additional protein functions were predicted suggesting their involvement in quorum sensing and motility. The genomes of two previously uncharacterized V. chlorellavorus isolates reveal nucleotide and protein level divergence between each other, and a previously sequenced V. chlorellavorus genome. This new knowledge will enhance the fundamental understanding of trans‐kingdom interactions between a unique cosmopolitan cyanobacterial pathogen and its green microalgal host, of broad interest as a source of harvestable biomass for biofuels or bioproducts.  相似文献   
964.
Pepper bacterial wilt is caused by the bacterial pathogen, Ralstonia solanacearum. It is the most destructive disease of many Solanaceous crops such as potatoes, tobacco, pepper, tomatoes and eggplant and is a significant source of crop loss worldwide. Physical, cultural and chemical controls have been employed to combat this destructive disease. However, none of these strategies has been able to control the disease completely due to the broad host range and genetic diversity of the pathogen, its prolonged survival in the soil and survival on vegetation as a latent infection. Owing to co-management strategies, biological control is the best approach for human health and environmental friendly motivations. It makes use of various antagonistic rhizobacteria and epiphytic species such as Bacillus cereus, Pseudomonas putida, Bacillus subtilis, Paenibacillus macerans, Serratia marcescens, Bacillus pumilus and Pseudomonas fluorescens, which compete with and ultimately inhibit the growth of the pathogen. The possible mechanisms of biocontrol by these species involve multifaceted interactions between the host, pathogen and the antagonists. These can involve competition for nutrients and space, plant-mediated systemic resistance, siderophore production and production of extracellular cell wall degrading enzymes to inhibit or suppress the growth of the bacterial wilt agent.  相似文献   
965.
The late endosomes/endo‐lysosomes of vertebrates contain an atypical phospholipid, lysobisphosphatidic acid (LBPA) (also termed bis[monoacylglycero]phosphate [BMP]), which is not detected elsewhere in the cell. LBPA is abundant in the membrane system present in the lumen of this compartment, including intralumenal vesicles (ILVs). In this review, the current knowledge on LBPA and LBPA‐containing membranes will be summarized, and their role in the control of endosomal cholesterol will be outlined. Some speculations will also be made on how this system may be overwhelmed in the cholesterol storage disorder Niemann‐Pick C. Then, the roles of intralumenal membranes in endo‐lysosomal dynamics and functions will be discussed in broader terms. Likewise, the mechanisms that drive the biogenesis of intralumenal membranes, including ESCRTs, will also be discussed, as well as their diverse composition and fate, including degradation in lysosomes and secretion as exosomes. This review will also discuss how intralumenal membranes are hijacked by pathogenic agents during intoxication and infection, and what is the biochemical composition and function of the intra‐endosomal lumenal milieu. Finally, this review will allude to the size limitations imposed on intralumenal vesicle functions and speculate on the possible role of LBPA as calcium chelator in the acidic calcium stores of endo‐lysosomes.  相似文献   
966.
Listeria monocytogenes is a rapidly growing, Gram‐positive, facultative intracellular pathogen that has been used for over 5 decades as a model to study basic aspects of infection and immunity. In a murine intravenous infection model, immunisation with a sublethal infection of L. monocytogenes initially leads to rapid intracellular multiplication followed by clearance of the bacteria and ultimately culminates in the development of long‐lived cell‐mediated immunity (CMI) mediated by antigen‐specific CD8+ cytotoxic T‐cells. Importantly, effective immunisation requires live, replicating bacteria. In this review, we summarise the cell and immunobiology of L. monocytogenes infection and discuss aspects of its pathogenesis that we suspect lead to robust CMI. We suggest five specific features of L. monocytogenes infection that positively impact the development of CMI: (a) the bacteria have a predilection for professional antigen‐presenting cells; (b) the bacteria escape from phagosomes, grow, and secrete antigens into the host cell cytosol; (c) bacterial‐secreted proteins enter the major histocompatibility complex (MHC) class I pathway of antigen processing and presentation; (d) the bacteria do not induce rapid host cell death; and (e) cytosolic bacteria induce a cytokine response that favours CMI. Collectively, these features make L. monocytogenes an attractive vaccine vector for both infectious disease applications and cancer immunotherapy.  相似文献   
967.
《Fungal biology》2020,124(2):102-109
Heterobasidion viruses have previously been shown to affect each other’s transmission and phenotypic effects on their hosts in a complex way. In this work, Heterobasidion parviporum strains hosting five coinfecting viruses simultaneously were constructed and used as donors in transmission experiments. They showed that viruses move more frequently between the mycelia of the same species than between the mycelia of H. parviporum and Heterobasidion annosum. One of the strains was used to show that coinfection of five viruses is relatively unstable in a natural environment and analyses of the growth rate and competitive ability of Heterobasidion strains hosting various virus combinations revealed that viral effects are not additive. The results also supported the view that the transmission of the promising virocontrol agent HetPV13-an1 may be enhanced by coinfecting viruses in the donor mycelium. However, its detrimental effects may be blocked by the presence of other viruses in the same mycelium.RepositoriesGenBank accession number MN058080.  相似文献   
968.
Studying fungal virulence is often challenging and frequently depends on many contexts, including host immune status and pathogen genetic background. However, the role of ploidy has often been overlooked when studying virulence in eukaryotic pathogens. Since fungal pathogens, including the human opportunistic pathogen Candida albicans, can display extensive ploidy variation, assessing how ploidy impacts virulence has important clinical relevance. As an opportunistic pathogen, C. albicans causes nonlethal, superficial infections in healthy individuals, but life‐threatening bloodstream infections in individuals with compromised immune function. Here, we determined how both ploidy and genetic background of C. albicans impacts virulence phenotypes in healthy and immunocompromised nematode hosts by characterizing virulence phenotypes in four near‐isogenic diploid and tetraploid pairs of strains, which included both laboratory and clinical genetic backgrounds. We found that C. albicans infections decreased host survival and negatively impacted host reproduction, and we leveraged these two measures to survey both lethal and nonlethal virulence phenotypes across the multiple C. albicans strains. In this study, we found that regardless of pathogen ploidy or genetic background, immunocompromised hosts were susceptible to fungal infection compared to healthy hosts. Furthermore, for each host context, we found a significant interaction between C. albicans genetic background and ploidy on virulence phenotypes, but no global differences between diploid and tetraploid pathogens were observed.  相似文献   
969.
Migratory waterfowl vector plant seeds and other tissues, but little attention has focused on the potential of avian vectoring of plant pathogens. Extensive meadows of eelgrass (Zostera marina) in southwest Alaska support hundreds of thousands of waterfowl during fall migration and may be susceptible to plant pathogens. We recovered DNA of organisms pathogenic to eelgrass from environmental samples and in the cloacal contents of eight of nine waterfowl species that annually migrate along the Pacific coast of North America and Asia. Coupled with a signal of asymmetrical gene flow of eelgrass running counter to that expected from oceanic and coastal currents between Large Marine Ecosystems, this evidence suggests waterfowl are vectors of eelgrass pathogens.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号