首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1696篇
  免费   71篇
  国内免费   13篇
  1780篇
  2023年   6篇
  2022年   15篇
  2021年   12篇
  2020年   21篇
  2019年   34篇
  2018年   32篇
  2017年   21篇
  2016年   24篇
  2015年   27篇
  2014年   31篇
  2013年   85篇
  2012年   28篇
  2011年   26篇
  2010年   31篇
  2009年   55篇
  2008年   56篇
  2007年   47篇
  2006年   52篇
  2005年   50篇
  2004年   45篇
  2003年   42篇
  2002年   33篇
  2001年   45篇
  2000年   39篇
  1999年   32篇
  1998年   28篇
  1997年   37篇
  1996年   31篇
  1995年   33篇
  1994年   34篇
  1993年   44篇
  1992年   46篇
  1991年   44篇
  1990年   45篇
  1989年   53篇
  1988年   41篇
  1987年   42篇
  1986年   42篇
  1985年   53篇
  1984年   53篇
  1983年   39篇
  1982年   55篇
  1981年   40篇
  1980年   25篇
  1979年   25篇
  1978年   24篇
  1977年   17篇
  1976年   19篇
  1974年   4篇
  1971年   5篇
排序方式: 共有1780条查询结果,搜索用时 15 毫秒
121.
Summary Current procedures for isolating intestinal epithelial cell surface and intracellular membranes are based on the assumption that each organelle is marked by some unique constitutent. This assumption seemed inconsistent with the dynamic picture of subcellular organization emerging from studies of membrane turnover and recycling. Therefore, we have designed an alternative fractionation which is independent ofa priori marker assignments. We subjected mucosal homogenates to a sequence of separations based on sedimentation coefficient, equilibrium density, and partitioning in aqueous polymer twophase systems. The resulting distributions of protein and enzymatic markers define a total of 17 physically and biochemically distinct membrane populations. Among these are: basal-lateral membranes, with Na,K-ATPase enriched 21-fold; brush-border membranes, with alkaline phosphatase enriched as much as 38-fold; two populations apparently derived from the endoplasmic reticulum; a series of five populations believed to have been derived from the Golgi complex; and a series of five acid phosphatase-rich populations which we cannot identify unequivocally. Each of the five enzymatic markers we have followed is associated with a multiplicity of membrane populations. Basallateral, endoplasmic reticulum, and Golgi membranes contain alkaline phosphatase at the same specific activity as the initial homogenate. Similarly, Na,K-ATPase appears to be associated branes at specific activities two-to seven-fold that of the initial homogenate.  相似文献   
122.
High-affinity binding of3H-folate in Triton X-100 solubilized membranes of human liver displayed characteristics, e.g. apparent positive cooperativity, which are typical of specific folate binding. Ultrogel® AcA 44 chromatography of solubilized membranes saturated with3H-folate revealed a major peak of 100 kDa and a minor peak of 25 kDa. The 100 kDa peak could represent a hydrophobic membrane associated molecular form of the protein. This notion was supported by the fact that the two peaks had identical molecular weights as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis with immunoblotting.  相似文献   
123.
Non-synaptosomal and synaptosomal mitochondrial membrane-linked enzymatic activities, NADH-cytochrome c reductase rotenone insensitive (marker of the outer membrane) and cytochrome oxidase (marker of the inner membrane), were measured in rat brain hippocampus and striatum immediately after and 1, 4, and 7 days following the induction of complete transient ischemia (15 min) by the four vessel occlusion method. Furthermore citrate synthetase activity was measured with and without Triton X-100 in order to qualitatively evaluate the membrane permeability. Nonsynaptosomal mitochondrial membranes showed reduction of both activities only in the late reperfusion phase: NADH-CCRRi decreased in striatal mitochondria after 4–7 days and only after 7 days in the hippocampus. COX activity decreased only in striatal mitochondria 7 days after ischemia. Non-synaptosomal mitochondrial membrane permeability did not show changes. Synaptosomal mitochondria showed a decrease of NADH-CCRRi only at 7 days of reperfusion both in hippocampus and striatum, while COX activity decreased only during ischemia and returned to normal levels in the following days in the two areas considered. In summary, free mitochondria showed insensitiveness to ischemia but they risulted damaged in the late reperfusion phase, while mitochondria from the synaptic terminal showed ischemic damage, partially restored during reperfusion. The striatal mitochondria showed a major susceptibility to ischemia/repefusion damage, showing changes earlier than the hippocampal ones.  相似文献   
124.
Erythrocytes from patients with familial lecithin:cholesterol acyltransferase (LCAT) deficiency have been shown to exhibit an increase in membrane fluidity which is surprisingly small in view of the extensive alterations both in membrane lipicl composition (namely, an elevation in cholesterol and phosphatidylcholine contents as well as a decrease in phosphatidylethanolamine) and in the functional properties of these cells. In the hope of deriving some information concerning the interrelationship between the structural and functional abnormalities, we have used the spin probe 5-doxyl stearic acid to investigate the temperature-dependent fluidity properties of red cells from two patients with a hereditary hemolytic syndrome (HHS) whose red cells are also characterized by qualitatively similar alterations in phosphatidylcholine and phosphatidylethanolamine but, unlike those in LCAT deficiency, have relatively normal levels of membrane cholesterol. A small increase in membrane fluidity of HHS erythrocytes equivalent to that previously observed in LCAT deficiency was found, indicating that membrane cholesterol level does not exert an important modulatory influence on membrane fluidity in these cells. It is concluded that while the distinct patterns of structural and functional erythrocyte alterations in these two disorders cannot be explained on the basis of differences in bulk membrane fluidity, the marginally increased fluidity may underlie the abnormalities in osmotic fragility and membrane p-nitrophenylphosphatase activity which are shared in common by both types of modified red cells.  相似文献   
125.
《Free radical research》2013,47(9):1054-1063
Abstract

The antioxidant properties of the phenothiazine nucleus (PHT) associated with mitochondrial membranes and liposomes were investigated. PHT exhibited hydrophobic interaction with lipid bilayers, as shown by the quenching of excited states of 1-palmitoyl-2[10-pyran-1-yl)]-decanoyl-sn-glycero-3-phophocholine (PPDPC) incorporated in phosphatidylcholine/phosphatidylethanolamine/cardiolipin liposomes, observed even in high ionic strength; and by the spectral changes of PHT following the addition of mitochondrial membranes. Inserted into bilayers, 5 μM PHT was able to protect lipids and cytochrome c against pro-oxidant agents and exhibited spectral changes suggestive of oxidative modifications promoted by the trapping of the reactive species. In this regard, PHT exhibited the ability to scavenge DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical. PHT was also able to protect rat liver mitochondria against peroxide- and iron-induced oxidative damage and consequent swelling. At the concentration range in which the antioxidant properties were observed, PHT did not cause alterations in the membrane structure and function. This study contributes to the comprehension of the correlation structure and function of phenothiazines and antioxidant properties.  相似文献   
126.
Abstract

Cardiac glycoside binding to rat heart membrane preparations was measured by rapid filtration technique. The binding data were analyzed using quantitative computer analysis. The experimental results using [3H]-ouabain as the labeled ligand were consistent with a model in which cardiac glycoside specific binding occurs at two independent classes of sites. The high affinity sites were characterized by a dissociation constants of 40 nM, 50 nM, and 61 nM for ouabain, digoxin and digitoxin, respectively, with a binding capacity of 1.3 pmoles/mg protein. The lower affinity sites for ouabain were characterized by dissociation constants of 2.3 µM, 67 nM and 71 nM for ouabain, digoxin and digitoxin, respectively, with a binding capacity of 3 pmoles/mg protein. Potassium ions inhibit [3H]-ouabain binding in a dose dependent manner with an IC50 of 500 µM. Quantitative computer modelling indicated that potassium inhibits ouabain binding at both binding sites.  相似文献   
127.
Bilirubin (BR) adsorbents have low removal efficiency because of the tight binding of BR with human albumin (HA) in a complicated blood system. Sodium deoxycholate (SDC) was selected as an adsorption promoter to improve the BR adsorption capacity of a cellulose acetate (CA)/polyethyleneimine (PEI) membrane. Static adsorption experiments show that the maximum BR adsorption capacity of the membrane with SDC in BR–HA mock solution is 100–200% at the molar ratio of SDC to HA ranging from 8 to 12, higher than that without SDC. It is also found that SDC is more efficiently adsorbed by the membrane than BR and HA. Absorption, circular dichroism, and zeta potential studies demonstrate that SDC can be bound with the BR–HA complex to form a ternary BR–HA-SDCm complex. On the basis, the facilitated adsorption mechanism of BR with SDC was proposed that SDC aggregates or micelles form a quasi-multilayer adsorption on the membrane, increase approachable binding sites, and prolong the distance between the BR–HA complex and the membrane. Thus, SDC as a spacer reduces the influence of the steric hindrance of HA, resulting in an enhanced BR adsorption capacity. Dynamic adsorption results further evidence the facilitated adsorption mechanism.  相似文献   
128.
Ezrin, radixin and moesin (ERM) proteins are more and more recognized to play a key role in a large number of important physiological processes such as morphogenesis, cancer metastasis and virus infection. Recent reviews extensively discuss their biological functions 1, 2, 3 and 4. In this review, we will first remind the main features of this family of proteins, which are known as linkers and regulators of plasma membrane/cytoskeleton linkage. We will then briefly review their implication in pathological processes such as cancer and viral infection. In a second part, we will focus on biochemical and biophysical approaches to study ERM interaction with lipid membranes and conformational change in well-defined environments. In vitro studies using biomimetic lipid membranes, especially large unilamellar vesicles (LUVs), giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs) and recombinant proteins help to understand the molecular mechanism of conformational activation of ERM proteins. These tools are aimed to decorticate the different steps of the interaction, to simplify the experiments performed in vivo in much more complex biological environments.  相似文献   
129.
Abstract

The structure and dynamics of phosphatidylcholine bilayers are examined by reviewing the results of several nanoseconds of molecular dynamics simulations on a number of bilayer and monolayer models. The lengths of these simulations, the longest single one of which was 2 nanoseconds, were sufficiently long to effectively sample many of the longer-scale motions governing the behaviour of biomembranes. These simulations reproduce many experimental observables well and provide a degree of resolution currently unavailable experimentally.  相似文献   
130.
As a new adsorbent of lysozyme-like enzymes, chitin coated (CC-)cellulose was prepared. CC-cellulose was stable and had good flow properties for use in column chromatography. Affinity chromatography with CC-cellulose showed that 3~5 mg of lysozyme/ml resin was adsorbed specifically and desorbed quantitatively under mild conditions. The utilities of the method of affinity chromatography with CC-cellulose are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号