首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   8篇
  国内免费   7篇
  151篇
  2023年   3篇
  2022年   1篇
  2021年   4篇
  2020年   8篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   2篇
  2013年   4篇
  2012年   8篇
  2011年   10篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   7篇
  2006年   7篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   10篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1996年   3篇
  1994年   5篇
  1993年   4篇
  1992年   1篇
  1991年   6篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有151条查询结果,搜索用时 0 毫秒
41.
莲胚子叶中维管束的发育和传递细胞   总被引:2,自引:0,他引:2  
莲子叶组织中的维管束均等的分布于两瓣子叶里,形成1周。筛分子由2个维管束母细胞分裂而来。维管束无形成层,无导管,也不具有螺纹管胞,呈有筛分子。子叶维管不好育成熟约在受一的20天,成熟时细胞核消失,次生壁向内延伸,筛管分子的细胞壁形成网纹结构。子叶组织中传递细胞在物质分布广泛,传递细胞首选发生于维管束的末和边缘,其细胞壁内突,显极性生长。表面积与体积的比值有利于昨管的装载,同时在物质运输的受体和供体  相似文献   
42.
Forisomes are protein aggregates found uniquely in the sieve elements of Fabaceaen plants. Upon wounding they undergo a reversible, calcium-dependent conformational switch which enables them to act as cellular stopcocks. Forisomes begin to form in young sieve elements at an early stage of metaphloem differentiation. Genes encoding forisome components could therefore be useful as markers of early sieve element development. Here we present a comprehensive analysis of the developmental expression profile of for1, which encodes such a forisome component. The for1 gene is highly conserved among Fabaceaen species and appears to be unique to this phylogenetic lineage since no orthologous genes have been found in other plants, including Arabidopsis and rice. Even so, transgenic tobacco plants expressing reporter genes under the control of the for1 promoter display reporter activity exclusively in immature sieve elements. This suggests that the regulation of sieve element development is highly conserved even in plants where mature forisomes have not been detected. The promoter system could therefore provide a powerful tool for the detailed analysis of differentiation in metaphloem sieve elements in an unexpectedly broad range of plant species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
43.
BACKGROUND AND AIMS: Forisomes are Ca(2+)-dependent contractile protein bodies that form reversible plugs in sieve tubes of faboid legumes. Previous work employed Vicia faba forisomes, a not entirely unproblematic experimental system. The aim of this study was to seek to establish a superior model to study these intriguing actuators. METHODS: Existing isolation procedures were modified to study the exceptionally large, tailed forisomes of Canavalia gladiata by differential interference contrast microscopy in vitro. To analyse contraction/expansion kinetics quantitatively, a geometric model was devised which enabled the computation of time-courses of derived parameters such as forisome volume from simple parameters readily determined on micrographs. KEY RESULTS: Advantages of C. gladiata over previously utilized species include the enormous size of its forisomes (up to 55 microm long), the presence of tails which facilitate micromanipulation of individual forisomes, and the possibility of collecting material repeatedly from these fast-growing vines without sacrificing the plants. The main bodies of isolated Canavalia forisomes were box-shaped with square cross-sections and basically retained this shape in all stages of contraction. Ca(2+)-induced a 6-fold volume increase within about 10-15 s; the reverse reaction following Ca(2+)-depletion proceeded in a fraction of that time. CONCLUSIONS: The sword bean C. gladiata provides a superior experimental system which will prove indispensable in physiological, biophysical, ultrastructural and molecular studies on the unique ATP-independent contractility of forisomes.  相似文献   
44.
BACKGROUND AND AIMS: One of the most extreme manifestations of parasitism is found in the genus Cytinus, a holoparasite whose vegetative body is reduced to an endophytic system living within its host root. There are two species of Cytinus in the Mediterranean, C. hypocistis and C. ruber, which parasitize various genera of Cistaceae, one of the most characteristic families of the Mediterranean scrublands. The aim of this work is to describe the endophytic systems of C. hypocistis and C. ruber, and their tissue relationships with their host. METHODS: Roots from five different hosts infected with C. hypocistis and C. ruber were harvested, and examined by anatomical techniques under light microscopy to elucidate the characteristics of the endophytic system of Cytinus, and to determine if differences in endophytic systems occur between the two species and in response to different hosts. KEY RESULTS: The endophyte structure is similar in both Cytinus species irrespective of the host species. In the initial stages of the endophyte, rows of parenchymal cells spread through the host pericyclic derivatives and phloem, and begin to generate small nodules in the outermost region of the host xylem. Later the nodules anastomose, and bands of parasitic tissue are formed. The host cambium continues to develop xylem tissue, and consequently the endophyte becomes enclosed within the xylem. The bands of parasitic tissue fuse to form a continuous sheath. This mature endophyte has well-developed vascular system with xylem and phloem, and forms sinkers with transfer cells that grow through the host xylem. CONCLUSIONS: The endophytic system of Cytinus develops in all host root tissues and reaches its most mature stages in the host xylem. It is more complex than previously reported, showing parenchyma, xylem and phloem tissues. This is the first report of well-developed phloem in a holoparasitic endophytic species.  相似文献   
45.
The location and structure of ferritin in the parenchyma of leaf minor veins of the common ice plant (Mesembryanthemum crystallinum L.) treated with exogenous putrescine under salinity conditions were investigated by electron microscopy. Considerable aggregates of ferritin were detected in the chloroplasts of bundle sheath cells, in companion phloem cells, and other parenchyma cells of leaf minor veins. The structure of ferritin in the vascular parenchyma chloroplasts suggests that it was partially degraded and converted to phytosiderin. This point of view is based on indistinct structure of Fe-containing cores of ferritin molecules, break of distance between the cores, and their pronounced ability to aggregate and produce larger structures. Aggregation of Fe-containing cores apparently pointed to the destruction of ferritin protein envelope or its partial degradation. In a certain stage of ferritin destruction, electron-dense material and the structures resembling small vesicles appeared between the Fe-containing cores. Electron-dense inclusions, whose structure was similar to that of phytosiderin, were also detected in the vacuoles. Examination of the cross sections done without additional staining showed that the same as ferritin, phytosiderin in the chloroplasts and vacuoles was dark-colored against weakly colored cellular structures. In the vascular parenchyma of control plant leaves, the level of ferritin and phytosiderin was greater than in the mesophyll and much lower than in the plants simultaneously treated with NaCl and putrescine. In control material, iron cores of ferritin and phytosiderin were more light-colored and 2–3 times smaller in size than in the experimental treatment. Destruction of ferritin essentially did not occur in the mesophyll but was observed in the chloroplasts of bundle sheath cells on the border between the mesophyll and vascular bundle. The presence of much ferritin and phytosiderin on the border between the mesophyll and the vessels is accounted for by the fact that the vascular parenchyma is a buffer area that maintains a specific concentration of iron in the mesophyll of leaves and other parts of the plant. Within the cell, the role of such a buffer is performed by ferritin and vacuoles. Transformation of ferritin to insoluble hydrophobic phytosiderin is supposed to be an efficient way of withdrawing the excess of active iron from the cellular metabolism and therefore of relaxing oxidative stress. Ferritin and phytosiderin were detected not only in parenchyma cells of leaf minor veins but in sieve tubes as well. This suggests that iron may be transported within the plant as a component of protein complex.  相似文献   
46.
The seasonal development of phloem in the stems of Siberian larch (Larix sibirica Ldb.) was studied over two seasons on 50–60-year-old trees growing in a natural stand in the Siberian forest-steppe zone. Trees at the age of 20–25 years were used to study metabolites in differentiating and mature phloem elements, cambial zone, and radially growing xylem cells in the periods of early and late wood formation. The development of the current-year phloem in the stems of 50–60-year-old trees started, depending on climatic conditions, in the second-third decades of May, 10–20 days before the xylem formation, and ended together with the shoot growth cessation in late July. Monitoring of the seasonal activity of cambium producing phloem sieve cells and the duration of their differentiation compared to the xylem derivatives in the cambium demonstrated that the top production of phloem and xylem cells could coincide or not coincide during the season, while their differentiation activity was always in antiphase. Sieve cells in the early phloem are separated from those in the late phloem by a layer of tannin-containing cells, which are formed in the period when late xylem formation starts. The starch content in the structural elements of phloem depends on the state of annual xylem layer development. The content of low molecular weight carbohydrates, amino acids, organic acids, and phenols in phloem cells, cambial zone, and xylem derivatives of the cambium depends on the cell type and developmental stage as well as on the type of forming wood (early or late) differing by the cell wall parameters and, hence, by the requirement for assimilates. Significant differences in the dynamics of substances per dry weight and cell were observed during cell development.  相似文献   
47.
48.
Phloem sieve elements have shut‐off mechanisms that prevent loss of nutrient‐rich phloem sap when the phloem is damaged. Some phloem proteins such as the proteins that form forisomes in legume sieve elements are one such mechanism and in response to damage, they instantly form occlusions that stop the flow of sap. It has long been hypothesized that one function of phloem proteins is defence against phloem sap‐feeding insects such as aphids. This study provides the first experimental evidence that aphid feeding can induce phloem protein occlusion and that the aphid‐induced occlusions inhibit phloem sap ingestion. The great majority of phloem penetrations in Vicia faba by the generalist aphids Myzus persicae and Macrosiphum euphorbiae triggered forisome occlusion and the aphids eventually withdrew their stylets without ingesting phloem sap. This contrasts starkly with a previous study on the legume‐specialist aphid, Acyrthosiphon pisum, where penetration of faba bean sieve elements did not trigger forisome occlusion and the aphids readily ingested phloem sap. Next, forisome occlusion was demonstrated to be the cause of failed phloem ingestion attempts by M. persicae: when occlusion was inhibited by the calcium channel blocker lanthanum, M. persicae readily ingested faba bean phloem sap.  相似文献   
49.
本实验观察了迅速减压前呼吸模拟机载分子筛产氧系统不同富氧浓度的气体对狗高空迅速减压后气体交换功能的影响。按拉丁方的实验顺序,8条狗在减压前分别呼吸70%~100%4种富氧气体或空气5min,然后,再迅速减压到12000~18000m高度呼吸空气30s。实验结果表明,在减压后6~8s内,呼吸70%以上富氧浓度组的生理反应是等效的,表现在血氧饱和度和静脉氧分压的变化没有明显差别,但与空气对照组有显著差别。研究表明,高空迅速减压时氧自体内到体外的反向弥散分两个时相,它们与减压瞬间的生理效应和有效意识时间有密切的关系。这一结果是分子筛氧气装备工程设计与应用的基础。  相似文献   
50.
E. P. Eleftheriou 《Protoplasma》1996,193(1-4):204-212
Summary Protophloem sieve elements (PSEs) in roots of wheat (Triticum aestivum L.) are arranged in single vertical files. The number of PSEs within the files increases by symmetrical divisions, which take place after the completion of asymmetrical (formative) divisions and before the initiation of differentiation. The divisions are preceded by well defined pre-prophase bands (PPB) of microtubules, which surround the nucleus in an equatorial position. In the cytoplasmic region between the nuclear surface and the PPB, perinuclear and endoplasmic microtubules were observed. The perinuclear microtubules are considered as part of the developing spindle, while the endoplasmic ones interlink the perinuclear microtubules with the PPB. Dividing cells do not show any signs of incipient differentiation. The first and most reliable indication of a commencing differentiation is provided by the sieve-element plastids that begin to accumulate dense crystalloid inclusions in the very young PSEs. In mature PSEs plastids contain two kinds of crystalloid inclusions, dense and thin, in a translucent stroma. Depending on the plastid-inclusions criterion it was shown that: (a) the PSEs of a given root do not initiate differentiation at exactly the same stage, (b) the developmental sequence extends to a span of 7–9 actively differentiating PSEs arranged in a single vertical file, and (c) each PSE needs about 16–21 h to pass through the whole developmental sequence. In the last two differentiating PSEs of a file, mitochondria were found to be enveloped by single cisternae of ER. The association is temporary as it is lost in the first PSEs with an autolysed lumen. During differentiation, Golgi bodies were abundant and active in producing vesicles involved in cell wall development. Golgi vesicles were also found among the microtubules of the PPB, but no local thickening was observed. Golgi bodies disorganize in the last stages of autolysis and disappear in mature sieve elements.Abbreviations ER endoplasmic reticulum - MSE metaphloem sieve element - PPB pre-prophase band - PSE protophloem sieve element Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号