首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128747篇
  免费   9103篇
  国内免费   5579篇
  2024年   316篇
  2023年   2015篇
  2022年   3024篇
  2021年   3949篇
  2020年   4110篇
  2019年   4918篇
  2018年   4472篇
  2017年   3402篇
  2016年   3376篇
  2015年   4048篇
  2014年   7161篇
  2013年   9127篇
  2012年   5503篇
  2011年   7276篇
  2010年   6174篇
  2009年   6261篇
  2008年   6477篇
  2007年   6629篇
  2006年   5873篇
  2005年   5448篇
  2004年   4952篇
  2003年   4167篇
  2002年   3575篇
  2001年   2583篇
  2000年   2132篇
  1999年   2206篇
  1998年   2033篇
  1997年   1796篇
  1996年   1674篇
  1995年   1652篇
  1994年   1546篇
  1993年   1362篇
  1992年   1267篇
  1991年   1150篇
  1990年   903篇
  1989年   840篇
  1988年   775篇
  1987年   691篇
  1986年   621篇
  1985年   846篇
  1984年   1127篇
  1983年   852篇
  1982年   938篇
  1981年   733篇
  1980年   731篇
  1979年   578篇
  1978年   437篇
  1977年   394篇
  1976年   364篇
  1975年   275篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
Oxidative stress is important for the initiation and progression of cancers, which confers the cells with a survival advantage by inducing oxidative adaption and drug resistance. Therefore, developing strategies to promote oxidative stress-induced cytotoxicity could be important for cancer therapy. Herein, we found that H2O2-mediated oxidative stress increases TRPV2 expression in human hepatoma (HepG2 and Huh-7) cells. This occurred at the mRNA and protein levels in a dose-dependent manner. The significance of TRPV2 in promoting H2O2-induced cell death was demonstrated in gain and loss of function studies with overexpression and knockdown of TRPV2, respectively. Mechanistically, H2O2-induced cell death involves inhibition of pro-survival signaling proteins (Akt, Nrf2) and activation of pro-death signaling proteins (p38, JNK1). Overexpression of TRPV2 in H2O2-treated hepatoma cells aggravates the inhibition of Akt and Nrf2, while it enhances the activation of p38 and JNK1 at the early stage of cell death. Interestingly, increased expression of TRPV2 in HepG2 cells improved the efficacy of stress-associated chemicals to induce cell death. Our findings suggest that TRPV2 acts as an important enhancer for H2O2-induced cytotoxicity. This process occurred by the inhibition of Akt and Nrf2 as well as the early activation of p38 and JNK1. These findings have important implications for inhibition of oxidative adaption and drug resistance.  相似文献   
182.
The frog skin host-defense peptide tigerinin-1R (RVCSAIPLPICH.NH2) is insulinotropic both in vitro and in vivo. This study investigates the effects on insulin release and cytotoxicity of changes in cationicity and hydrophobicity produced by selected substitutions of amino acids by l-arginine, l-lysine and l-tryptophan. The [A5W], [L8W] and [I10W] analogs produced a significant (P < 0.01) increase in the rate of insulin release from BRIN-BD11 rat clonal β cells at concentration of 0.01 nM compared with 0.1 nM for tigerinin-1R. The increase in the rate of insulin release produced by a 3 μM concentration of the [S4R], [H12K], and [I10W] analogs from both BRIN-BD11 cells and mouse islets was significantly greater (P < 0.05) than that produced by tigerinin-1R. No peptide stimulated the release of lactate dehydrogenase at concentrations up to 3 μM indicating that plasma membrane integrity had been preserved. [A5W] tigerinin-1R was the only analog tested that showed cytotoxic activity against human erythrocytes (LC50 = 265 ± 16 μM) and inhibited growth of Escherichia coli (MIC = 500 μM) and Staphylococcus aureus (MIC = 250 μM). The circular dichroism spectra of tigerinin-1R and [A5W] tigerinin-1R indicate that the peptides adopt a mixture of β-sheet, random coil and reverse β-turn conformations in 50% trifluoroethanol/water and methanol/water. Administration of [S4R] tigerinin-1R (75 nmol/kg body weight) to high-fat fed mice with insulin resistance significantly (P < 0.05) enhanced insulin release and improved glucose tolerance over a 60 min period following an intraperitoneal glucose load. The study supports the claim that tigerinin-1R shows potential for development into novel therapeutic agents for treatment of type 2 diabetes mellitus.  相似文献   
183.
The bacterial H+-translocating NADH:quinone oxidoreductase (NDH-1) catalyzes electron transfer from NADH to quinone coupled with proton pumping across the cytoplasmic membrane. The NuoK subunit (counterpart of the mitochondrial ND4L subunit) is one of the seven hydrophobic subunits in the membrane domain and bears three transmembrane segments (TM1–3). Two glutamic residues located in the adjacent transmembrane helices of NuoK are important for the energy coupled activity of NDH-1. In particular, mutation of the highly conserved carboxyl residue (KGlu-36 in TM2) to Ala led to a complete loss of the NDH-1 activities. Mutation of the second conserved carboxyl residue (KGlu-72 in TM3) moderately reduced the activities. To clarify the contribution of NuoK to the mechanism of proton translocation, we relocated these two conserved residues. When we shifted KGlu-36 along TM2 to positions 32, 38, 39, and 40, the mutants largely retained energy transducing NDH-1 activities. According to the recent structural information, these positions are located in the vicinity of KGlu-36, present in the same helix phase, in an immediately before and after helix turn. In an earlier study, a double mutation of two arginine residues located in a short cytoplasmic loop between TM1 and TM2 (loop-1) showed a drastic effect on energy transducing activities. Therefore, the importance of this cytosolic loop of NuoK (KArg-25, KArg-26, and KAsn-27) for the energy transducing activities was extensively studied. The probable roles of subunit NuoK in the energy transducing mechanism of NDH-1 are discussed.  相似文献   
184.
《Developmental cell》2022,57(14):1694-1711.e7
  1. Download : Download high-res image (191KB)
  2. Download : Download full-size image
  相似文献   
185.
The Rhynchosciara americana C3-22 gene is located in an amplified domain and is developmentally expressed. The aim of the present work was to identify intrinsically bent DNA sites in a segment containing the gene promoter and downstream sequence. The results indicated that this gene is flanked by intrinsically bent DNA sites. Three bent DNA sites (b?3, b?2, and b?1) were localized in the promoter, and one was localized downstream of the gene (b+1). These sites had helical parameters that confirmed the curved structure, as well as segments with left-handed superhelical writhe. In silico analysis of the promoters of four other insect genes, which encode secreted polypeptides, showed that they all had curved structures and similar helical parameters. Correlation with other results indicates that the detected intrinsically bent DNA sites that flank the C3-22 gene might be a consensus feature of the gene structure in the amplified domains.  相似文献   
186.
《Molecular cell》2021,81(17):3650-3658.e5
  1. Download : Download high-res image (183KB)
  2. Download : Download full-size image
  相似文献   
187.
The enzymatic activity of salivary amylase bound to the surface of several species of oral streptococci was determined by the production of acid from starch and by the degradation of maltotetraose to glucose in a coupled, spectrophotometric assay. Most strains able to bind amylase exhibited functional enzyme on their surface and produced acid from the products of amylolytic degradation. These strains were unable to utilise starch in the absence of salivary amylase. Two strains failed to produce acid from starch, despite the presence of functional salivary amylase, because they could not utilise maltose. Strains that could not bind salivary amylase failed to produce acid from starch. In no case was all the bound salivary amylase active, and two strains of Streptococcus mitis which bound amylase did not exhibit any enzyme activity on their cell surface. The ability to bind amylase may confer a survival advantage on oral bacteria which inhabit hosts that consume diets containing starch.  相似文献   
188.
The abundance of an mRNA encoding an HMG1/2 protein from Pharbitis nil (HMG1) has been previously shown to be regulated by light and an endogenous rhythm in cotyledons. A second Pharbitis nil HMG cDNA (HMG2) was characterized. The sequence of HMG2 was 82% and 86% identical to HMG1 at the nucleotide and amino acid level, respectively. As with HMG1, HMG2 mRNA was detected in all vegetative tissues and was most abundant in roots. However, unlike HMG1, HMG2 mRNA abundance did not increase upon transfer of cotyledons to darkness and did not exhibit regulation by an endogenous circadian rhythm when maintained in continuous darkness over a 68 h period. Similarly, while the abundance of HMG1 mRNA during a dark period that induced photoperiodically controlled flowering was dramatically affected by brief light exposure (night break), this treatment had no effect on HMG2 mRNA abundance. Collectively, these data are consistent with a role of HMG1 in contributing to the circadian-regulated and/or dark-regulated gene expression with constitutive expression of HMG2 playing a housekeeping role in the general regulation of gene expression in Pharbitis nil cotyledons.  相似文献   
189.
190.
We investigated the synthesis and translocation of amino compounds in Parasponia, a genus of the Ulmaceae that represents the only non-legumes known to form a root nodule symbiosis with rhizohia. In the xylem sap of P. andersonii we identified asparagine. aspartate. glutamine, glutamated significant quantities of a non-protein amino acid. 4-methylglutamte(2-amino-4-methylpentanedioic acid). This identification was confirmed by two methods, capillary gas chromatography (GC) electron ionization (El) mass spectrometry (MS) and reverse phase high pressure liquid chromatography (HPLC) analysis of derivatized compounds. In leaf, root and nodule samples from P. andersonii and P. parviflora we also identified the related compounds 4-methyleneglutamate and 4-methyleneglulamine. Using 15N2 labelling and GC-Ms analysis of root nodule extracts we followed N2 fixation and ammonia assimilation in P. andersonii root nodules and observed Label initially in glutamine and subsequently in glutamate, suggesting operation of the glutamine synthetase/glutamine:2-oxoglutarate aminotransferase (GS/GOGAT) pathway. Importantly, we observed the incorporation of significant quantities of 15N into 4-methylglutamate in nodules, demonstrating the de nova synthesis of this non protein amino acid and suggesting a role in the translation of N in symbioticParasponia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号