首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1540篇
  免费   54篇
  国内免费   40篇
  2023年   9篇
  2022年   20篇
  2021年   33篇
  2020年   47篇
  2019年   57篇
  2018年   51篇
  2017年   32篇
  2016年   29篇
  2015年   26篇
  2014年   53篇
  2013年   89篇
  2012年   44篇
  2011年   49篇
  2010年   38篇
  2009年   63篇
  2008年   90篇
  2007年   77篇
  2006年   67篇
  2005年   69篇
  2004年   64篇
  2003年   49篇
  2002年   67篇
  2001年   56篇
  2000年   35篇
  1999年   28篇
  1998年   44篇
  1997年   48篇
  1996年   39篇
  1995年   20篇
  1994年   22篇
  1993年   19篇
  1992年   18篇
  1991年   18篇
  1990年   15篇
  1989年   21篇
  1988年   18篇
  1987年   8篇
  1986年   17篇
  1985年   16篇
  1984年   9篇
  1983年   10篇
  1982年   15篇
  1981年   8篇
  1980年   3篇
  1979年   7篇
  1978年   4篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
排序方式: 共有1634条查询结果,搜索用时 14 毫秒
41.
The fine structure, distribution, and fate of cortical granules in human oocytes cultured in vitro are reported. Follicular maturation in women with blocked Fallopian tubes was induced by clomiphene citrate and human chorionic gonadotropin, and preovulatory eggs were obtained by improved methods of laproscopy and oocyte recovery. These oocytes were then inseminated and cultured in a modified Ham's F10 medium for 3 to 72 hr to assess their fertilizability. Cortical granules were observed in all 17 unfertilized oocytes investigated, which had completed various stages of meiotic maturation. A marked increase in their numbers was observed in oocytes cultured for 3 to 6 hr. There was no evidence of spontaneous cortical granule release in any of the oocytes studied. It is concluded that cortical maturation expressed by proliferation of cortical granules is as significant a criterion as nuclear maturation in assessing maturity and fertilizability of oocytes cultured in vitro. A short sojourn in culture before insemination could improve chances of normal fertilization and embryo development, which has been recently achieved in our laboratory.  相似文献   
42.
The relationship between cellular dispersion and steroidogenesis was studied in culture using oocyte-cumulus complexes harvested from porcine follicles. The cells were cultured in modified TC 199 containing pig serum for one to two days. When oocyte-cumulus complexes were cultured in the absence of hormone the oocytes resumed meiosis, the cumulus cells grew out forming monolayers, and progesterone accumulation was low. Addition of ovine LH, purified human LH, or purified human FSH stimulated expansion of the cumulus mass as well as enhanced progesterone accumulation. Oocyte maturation was not affected by the hormones. In absence of hormone, oocyte-cumulus complexes obtained from large (6–12 mm) follicles showed increased cellular dispersion and higher progesterone accumulation as compared to complexes obtained from medium-sized (3–5 mm) follicles.  相似文献   
43.
The Y human chromosome has many ancient genes whose fidelity seems to have been preserved by tandem sequences and palindromic ‘hairpins’, compared/repaired by ‘gene conversion’. That a primary function of recombination machinery is DNA repair has been suggested, and rejected, several times; this new evidence is very persuasive. The process, better called gene conservation than gene conversion, could operate in all diploid organisms, accounting for the retention of long gene sequences without ‘informational meltdown’ ('concerted evolution'). It resembles rocket‐science computer‐redundancy error‐checking, comparison of three or four sequences, not just two. If recognition of errors in ‘converted’ sequences can be followed by either repair or rejection, the rejection option can account for the vast wastage of meiotic products. The repair option might be used in Drosophila oocytes and even zygotic nuclei, possibly other oocytes, ancient asexual lineages such as mycorrhizal fungi, perhaps the Y itself. Both evolutionary stasis (conservatism) and development and deployment of complex developmental modules can be understood in these terms so both the evolution of biodiversity and the practice of systematics may have these mechanisms as their bases. The main individual‐fitness and evolutionary advantages of diploidy were not primarily cloaking of recessive al‐leles, or allelic recombination and Mendelism, but conserving long DNA sequences.  相似文献   
44.
本研究通过比较9个内参基因在山羊不同组织中的表达水平进而确定最适合研究山羊组织表达的内参基因。本试验以简州大耳羊为试验材料,利用实时荧光定量PCR技术分析9个内参基因(GAPDH,PPIA,18S rRNA,PPIB,UXT,RPLP0,ACTB,EIF3K和TBP)在心脏、肝脏、脾脏、肺脏、肾脏、大肠、瘤胃、背最长肌和皮下脂肪等组织中的表达差异情况,并利用geNorm、NormFinder和BestKeeper等程序分析了它们的表达稳定性。geNorm和NormFinder程序一致显示TBP表达最稳定,其次是UXT和RPLP0;BestKeeper分析显示18S rRNA表达最为稳定,其次为TBP和ACTB;3个程序一致认为GAPDH表达稳定性最差。综合3个程序分析得出TBP最适合作为山羊组织中的内参基因,其次为UXT和RPLP0,GAPDH表达稳定性最差,不适合作为山羊组织内参,这为后续研究其他目的基因在山羊组织器官中的表达模式提供数据保障。  相似文献   
45.
46.
Phosphodiesterase (PDE)‐mediated reduction of cyclic adenosine monophosphate (cAMP) activity can initiate germinal vesicle (GV) breakdown in mammalian oocytes. It is crucial to maintain oocytes at the GV stage for a long period to analyze meiotic resumption in vitro. Meiotic resumption can be reversibly inhibited in isolated oocytes by cAMP modulator forskolin, cAMP analog dibutyryl cAMP (dbcAMP), or PDE inhibitors, milrinone (Mil), Cilostazol (CLZ), and 3‐isobutyl‐1‐methylxanthine (IBMX). However, these chemicals negatively affect oocyte development and maturation when used independently. Here, we used ICR mice to develop a model that could maintain GV‐stage arrest with minimal toxic effects on subsequent oocyte and embryonic development. We identified optimal concentrations of forskolin, dbcAMP, Mil, CLZ, IBMX, and their combinations for inhibiting oocyte meiotic resumption. Adverse effects were assessed according to subsequent development potential, including meiotic resumption after washout, first polar body extrusion, early apoptosis, double‐strand DNA breaks, mitochondrial distribution, adenosine triphosphate levels, and embryonic development. Incubation with a combination of 50.0 μM dbcAMP and 10.0 μM IBMX efficiently inhibited meiotic resumption in GV‐stage oocytes, with low toxicity on subsequent oocyte maturation and embryonic development. This work proposes a novel method with reduced toxicity to effectively arrest and maintain mouse oocytes at the GV stage.  相似文献   
47.
Failed oocyte activation has been observed in unexplained infertile (UI) and asthenoteratozoospermic (AT) men. The deficiency of phospholipase C‐zeta (PLCζ) could be a possible reason for such failures and has not been studied yet. We investigated the expression and localization of PLCζ protein in the sperms of patients with UI and AT conditions. The relationships between PLCζ‐related parameters with male age, sperm characteristics, DNA integrity, and cellular maturity were assessed. Semen samples were collected from fertile (n = 40), UI (n = 40), and AT (n = 40) men. Subsequently, semen analysis, DNA fragmentation, hyaluronic acid‐binding ability, and PLCζ level along with its distribution were evaluated using computer‐assisted sperm analyzer, sperm chromatin structure assay (SCSA), hyaluronic acid‐binding assay (HBA), western blot analysis and immunofluorescence microscopy, respectively. Unlike SCSA, the values of HBA, and PLCζ expression were significantly reduced in UI and AT patients compared to fertile men, whereas no significant differences were observed among the experimental groups in terms of PLCζ localization patterns. The regression analysis also showed that HBA is the only variable associated with PLCζ levels. Furthermore, the correlation of male age with PLCζ localization in postacrosomal, equatorial, and acrosomal+postacrosomal+equatorial (A+PA+E) patterns, as well as the relation of normal morphology, with the (A+PA+E) pattern, remained in the regression model. Our findings indicated that reduced PLCζ level along with the increased DNA fragmentation and impaired maturation may be possible etiologies of decreased fertilization in the studied subjects.  相似文献   
48.
Egg activation is the essential process in which mature oocytes gain the competency to proceed into embryonic development. Many events of egg activation are conserved, including an initial rise of intracellular calcium. In some species, such as echinoderms and mammals, changes in the actin cytoskeleton occur around the time of fertilization and egg activation. However, the interplay between calcium and actin during egg activation remains unclear. Here, we use imaging, genetics, pharmacological treatment, and physical manipulation to elucidate the relationship between calcium and actin in living Drosophila eggs. We show that, before egg activation, actin is smoothly distributed between ridges in the cortex of the dehydrated mature oocytes. At the onset of egg activation, we observe actin spreading out as the egg swells though the intake of fluid. We show that a relaxed actin cytoskeleton is required for the intracellular rise of calcium to initiate and propagate. Once the swelling is complete and the calcium wave is traversing the egg, it leads to a reorganization of actin in a wavelike manner. After the calcium wave, the actin cytoskeleton has an even distribution of foci at the cortex. Together, our data show that calcium resets the actin cytoskeleton at egg activation, a model that we propose to be likely conserved in other species.  相似文献   
49.
Cdc25B is an essential regulator for meiotic resumption in mouse oocytes. However, the role of this phosphatase during the later stage of the meiotic cell cycle is not known. In this study, we investigated the role of Cdc25B during metaphase II (MII) arrest in mouse oocytes. Cdc25B was extensively phosphorylated during MII arrest with an increase in the phosphatase activity toward Cdk1. Downregulation of Cdc25B by antibody injection induced the formation of a pronucleus-like structure. Conversely, overexpression of Cdc25B inhibited Ca2+-mediated release from MII arrest. Moreover, Cdc25B was immediately dephosphorylated and hence inactivated during MII exit, suggesting that Cdk1 phosphorylation is required to exit from MII arrest. Interestingly, this inactivation occurred prior to cyclin B degradation. Taken together, our data demonstrate that MII arrest in mouse oocytes is tightly regulated not only by the proteolytic degradation of cyclin B but also by dynamic phosphorylation of Cdk1.  相似文献   
50.
Abstract

In many animals, factors deposited by the mother into the egg control the earliest events in development of the zygote. These maternal RNAs and proteins play critical roles in oocyte development and the earliest steps of embryogenesis such as fertilization, cell division and embryonic patterning. Here, this article summarizes recent discoveries made on the maternal control of germline specification in zebrafish. Moreover, this review will discuss the major gaps remaining in our understanding of this process and highlight recent technical innovations in zebrafish, which allow tackling some of these questions in the near future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号