全文获取类型
收费全文 | 2931篇 |
免费 | 122篇 |
国内免费 | 59篇 |
专业分类
3112篇 |
出版年
2023年 | 66篇 |
2022年 | 65篇 |
2021年 | 89篇 |
2020年 | 59篇 |
2019年 | 78篇 |
2018年 | 63篇 |
2017年 | 59篇 |
2016年 | 38篇 |
2015年 | 65篇 |
2014年 | 103篇 |
2013年 | 133篇 |
2012年 | 107篇 |
2011年 | 110篇 |
2010年 | 78篇 |
2009年 | 120篇 |
2008年 | 141篇 |
2007年 | 141篇 |
2006年 | 130篇 |
2005年 | 96篇 |
2004年 | 130篇 |
2003年 | 97篇 |
2002年 | 105篇 |
2001年 | 66篇 |
2000年 | 71篇 |
1999年 | 69篇 |
1998年 | 64篇 |
1997年 | 52篇 |
1996年 | 60篇 |
1995年 | 62篇 |
1994年 | 58篇 |
1993年 | 46篇 |
1992年 | 41篇 |
1991年 | 50篇 |
1990年 | 44篇 |
1989年 | 50篇 |
1988年 | 37篇 |
1987年 | 23篇 |
1986年 | 29篇 |
1985年 | 35篇 |
1984年 | 26篇 |
1983年 | 8篇 |
1982年 | 27篇 |
1981年 | 23篇 |
1980年 | 14篇 |
1979年 | 13篇 |
1978年 | 16篇 |
1977年 | 12篇 |
1976年 | 9篇 |
1973年 | 8篇 |
1971年 | 8篇 |
排序方式: 共有3112条查询结果,搜索用时 31 毫秒
101.
Fukue Y Sato T Teranishi H Hanada R Takahashi T Nakashima Y Kojima M 《FEBS letters》2006,580(14):3485-3488
Neuromedin U (NMU), an anorexigenic peptide, was originally isolated from porcine spinal cord in 1985. As NMU is abundant in the anterior pituitary gland, we investigated the effects of NMU on gonadotropin secretion. Both NMU and its receptors, NMUR1 and NMUR2, were expressed in the pituitary gland. NMU suppressed LH and FSH releases from rat anterior pituitary cells. Moreover, NMU-deficient mice exhibit an early onset of vaginal opening. The LHbeta/FSHbeta ratio, which is an index of puberty onset, is high in young NMU-deficient mice. These results indicate that NMU suppresses gonadotropin secretion and regulates the onset of puberty. 相似文献
102.
We have analyzed the distribution of putative cholinergic neurons in whole-mount preparations of adult Drosophila melanogaster. Putative cholinergic neurons were visualized by X-gal staining of P-element transformed flies carrying a fusion gene consisting of 5′ flanking DNA from the choline acetyltransferase (ChAT) gene and a lacZ reporter gene. We have previously demonstrated that cryostat sections of transgenic flies carrying 7.4 kb of ChAT 5′ flanking DNA show reporter gene expression in a pattern essentially similar to the known distribution of ChAT protein. Whole-mount staining of these same flies by X-gal should thus represent the overall distribution of ChAT-positive neurons. Extensive staining was observed in the cephalic, thoracic, and stomodeal ganglia, primary sensory neurons in antenna, maxillary palps, labial palps, leg, wing, and male genitalia. Primary sensory neurons associated with photoreceptors and tactile receptors were not stained. We also examined the effects of partial deletions of the 7.4 kb fragment on reporter gene expression. Deletion of the 7.4 kb fragment to 1.2 kb resulted in a dramatic reduction of X-gal staining in the peripheral nervous system (PNS). This indicates that important regulatory elements for ChAT expression in the PNS exist in the distal region of the 7.4 kb fragment. The distal parts of the 7.4 kb fragment, when fused to a basal heterologous promoter, can independently confer gene expression in subsets of putative cholinergic neurons. With these constructs, however, strong ectopic expression was also observed in several non-neuronal tissues. © 1995 John Wiley & Sons, Inc. 相似文献
103.
Tatsumi Nagahama Mitsuru Takata 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1990,167(1):1-10
1. | Spikes in Aplysia MA1 neurons produced excitatory (EJPs), inhibitory (IJPs), and diphasic inhibitory-excitatory junction potentials in different fibers of the buccal muscles. |
2. | The IJPs following the MA1 spikes were recorded in the muscle fibers innervated by the jaw-closing motoneurons. The depolarization of muscle fibers produced by the motoneurons was largely suppressed by simultaneous MA1 firing, suggesting that the MA1 neurons make a direct connection to a part of the muscle fibers innervated by these motoneurons and inhibit them. |
3. | The excitatory and inhibitory components of the junction potentials produced by MA1 were reversibly blocked by hexamethonium and d-tubocurarine, respectively. In contrast, the EJPs produced by the jaw-closing motoneurons were blocked by an amino acid antagonist, suggesting that the MA1 neurons and the jaw-closing motoneurons use different transmitters in the nerve-muscle junctions. |
4. | The jaw movement produced by the jaw-closing motoneurons was suppressed by simultaneous MA1 firing, and the suppression was released by d-tubocurarine, suggesting that the IJPs produced by MA1 may contribute to the suppression of jaw movement. The firing of MA1 produced the vertical movement of the buccal muscles, which was blocked by hexamethonium, suggesting that the EJPs produced by MA1 may contribute to the vertical movement. |
104.
We studied expression of the 5-HT1A receptor in cortical and limbic areas of the brain of the tree shrew. In situ hybridization with a receptor-specific probe and immunocytochemistry with various antibodies was used to identify distinct neurons expressing the receptor. In vitro receptor autoradiography with 3H-8-OH-DPAT (3H-8-hydroxy-2-[di-n-propylamino]tetralin) was performed to visualize receptor-binding sites. In the prefrontal, insular, and occipital cortex, 5-HT1A receptor mRNA was expressed in pyramidal neurons of layer 2, whereas 3H-8-OH-DPAT labeled layers 1 and 2 generating a columnar-like pattern in the prefrontal and occipital cortex. In the striate and ventral occipital cortex, receptor mRNA was present within layers 5 and 6 in pyramidal neurons and Meynert cells. Pyramid-like neurons in the claustrum and anterior olfactory nucleus also expressed the receptor. Principal neurons in hippocampal region CA1 expressed 5-HT1A receptor mRNA, and 3H-8-OH-DPAT labeled both the stratum oriens and stratum radiatum. CA3 pyramidal neurons displayed low 5-HT1A receptor expression, whereas granule neurons in the dentate gyrus revealed moderate expression of this receptor. In the amygdala, large pyramid-like neurons in the basal magnocellular nucleus strongly expressed the receptor. Immunocytochemistry with antibodies against parvalbumin, calbindin, and gamma aminobutyric acid (GABA) provided no evidence for 5-HT1A receptor expression in GABAergic neurons in cortical and limbic brain areas. Our data agree with previous findings showing that the 5-HT1A receptor mediates the modulation of glutamatergic neurons. Expression in the limbic and cortical areas suggested an involvement of 5-HT1A receptors in emotional and cognitive processes.This work was supported by the German Science Foundation (SFB 406; C4 to G.F.). 相似文献
105.
Cheuk-Yiu Law Chung-Wah Siu Katherine Fan Wing-Hon Lai Ka-Wing Au Yee-Man Lau Lai-Yung Wong Jenny C.Y. Ho Yee-ki Lee Hung-Fat Tse Kwong-Man Ng 《Biochemistry and Biophysics Reports》2016
Patients with Danon disease may suffer from severe cardiomyopathy, skeletal muscle dysfunction as well as varying degrees of mental retardation, in which the primary deficiency of lysosomal membrane-associated protein-2 (LAMP2) is considerably associated. Owing to the scarcity of human neurons, the pathological role of LAMP2 deficiency in neural injury of humans remains largely elusive. However, the application of induced pluripotent stem cells (iPSCs) may shed light on overcoming such scarcity.In this study, we obtained iPSCs derived from a patient carrying a mutated LAMP2 gene that is associated with Danon disease. By differentiating such LAMP2-deficient iPSCs into cerebral cortical neurons and with the aid of various biochemical assays, we demonstrated that the LAMP2-deficient neurons are more susceptible to mild oxidative stress-induced injury.The data from MTT assay and apoptotic analysis demonstrated that there was no notable difference in cellular viability between the normal and LAMP2-deficient neurons under non-stressed condition. When exposed to mild oxidative stress (10 μM H2O2), the LAMP2-deficient neurons exhibited a significant increase in apoptosis. Surprisingly, we did not observe any aberrant accumulation of autophagic materials in the LAMP2-deficient neurons under such stress condition.Our results from cellular fractionation and inhibitor blockade experiments further revealed that oxidative stress-induced apoptosis in the LAMP2-deficient cortical neurons was caused by increased abundance of cytosolic cathepsin L. These results suggest the involvement of lysosomal membrane permeabilization in the LAMP2 deficiency associated neural injury. 相似文献
106.
The tachykinin substance P (SP) acts on the gut muscle coat via its preferred receptor, neurokinin 1 (NK1r). In the mouse ileum, NK1r-immunoreactivity (NK1r-IR) was detected in neurons, in the interstitial cells of Cajal at the deep muscular plexus (ICC-DMP) and the myoid cells of the villi. SP-IR was detected in neurons and varicose nerve fibers, which were especially numerous at the DMP and closely associated with the ICC-DMP. In mice with a mutation in the W locus (ckit mutant animals), innervation is suggested to be normal although few studies have actually tested this hypothesis. Indeed, studies demonstrating ICC-DMP integrity are lacking and whether SP- and NK1r-IR are normal in these animals has not been investigated. Our aim was to perform an immunohistochemical study on the ileum of a strain of heterozygous mice with a mutation in the W locus, the W(e/+) mice, to test this hypothesis. SP-IR nerve fibers were significantly more numerous than in wild type mice; NK1r-IR was clustered on the plasma membrane and also intracytoplasmatic in the neurons, but absent in the ICC-DMP. The richness in SP-IR nerve fibers and the NK1r-IR distribution in the neurons, similar to that of activated cells, might be attempts to compensate for the SP preferred receptor absence at the ICC-DMP. In conclusion, SP content and NK1r expression are noticeably different in c-kit mutants with respect to wild type mice, and probably causing an anomalous tachykininergic control of intestinal motility. Physiological studies on Wmutant mice have to take into account that innervation in this animal model is affected by the c-kit mutation. 相似文献
107.
Visual attention appears to modulate cortical neurodynamics and synchronization through various cholinergic mechanisms. In
order to study these mechanisms, we have developed a neural network model of visual cortex area V4, based on psychophysical,
anatomical and physiological data. With this model, we want to link selective visual information processing to neural circuits
within V4, bottom-up sensory input pathways, top-down attention input pathways, and to cholinergic modulation from the prefrontal
lobe. We investigate cellular and network mechanisms underlying some recent analytical results from visual attention experimental
data. Our model can reproduce the experimental findings that attention to a stimulus causes increased gamma-frequency synchronization
in the superficial layers. Computer simulations and STA power analysis also demonstrate different effects of the different
cholinergic attention modulation action mechanisms. 相似文献
108.
109.
锐化蝙蝠听皮层神经元频率调谐的柱特征 总被引:4,自引:0,他引:4
用双声刺激和多管电极方法在 6只大棕蝠 (bigbrownbat,Eptesicusfuscus)的 98个神经元上研究了锐化 (sharpening)蝙蝠听皮层 (primaryauditorycortex ,AC)神经元频率调谐的柱特征。结果发现 ,电极直插在 1个电极通道内连续记录到多个神经元时 ,它们锐化频率调谐的抑制性调谐曲线或抑制区基本相似。电极与AC表面呈 45°斜向推入使其跨越多个功能柱时 ,可观察到锐化频率调谐的抑制区构成也随电极进入不同的功能柱而发生相应的改变。两种不同的电极插入方式均证明锐化AC神经元频率调谐的神经抑制呈柱状组构。这些神经元组合起来排列在同一听觉功能柱内 ,构成AC频率分析的基本功能组构单位“微频率处理器”。实验中还观察到多峰频率调谐曲线神经元 ,它们在声通讯和声定位中不同波谱区域的时间匹配中起作用。此外 ,也有理由认为多峰调谐神经元亦被用于作为复杂波谱信息的“高级调谐预处理器” ,从而极大地提高了神经元对频率分析的能力。为研究锐化频率调谐的神经抑制机制 ,用多管电极电泳γ -氨基丁酸 (γ aminobutyricacid ,GA BA)能a受体拮抗剂荷包牡丹碱 (bicuculline ,Bic)至所记录的神经元 ,发现能大部分或几乎全部取消抑制区 ,从而表明在正常情况下GABA能抑制参与构成锐化AC神经元频率调谐的抑制区 , 相似文献