排序方式: 共有137条查询结果,搜索用时 15 毫秒
71.
Mack Sobhany Yoshimitsu Kakuta Nobuo Sugiura Koji Kimata Masahiko Negishi 《The Journal of biological chemistry》2012,287(43):36022-36028
Bifunctional chondroitin synthase K4CP catalyzes glucuronic acid and N-acetylgalactosamine transfer activities and polymerizes a chondroitin chain. Here we have determined that an N-terminal region (residues 58–134) coordinates two transfer reactions and enables K4CP to catalyze polymerization. When residues 58–107 are deleted, K4CP loses polymerase activity while retaining both transfer activities. Peptide 113DWPSDL118 within this N-terminal region interacts with C-terminal peptide 677YTWEKI682. The deletion of either sequence abolishes glucuronic acid but not N-acetylgalactosamine transfer activity in K4CP. Both donor bindings and transfer activities are lost by mutating 677YTWEKI682 to 677DAWEDI682. On the other hand, acceptor substrates retain their binding to K4CP mutants. The characteristics of these K4CP mutants highlight different states of the enzyme reaction, providing an underlying structural basis for how these peptides play essential roles in coordinating the two glycosyltransferase activities for K4CP to elongate the chondroitin chain. 相似文献
72.
73.
74.
Differences in gene expression patterns between adult and postnatal day 7 (P7) mouse cerebellum, at the peak of granule neuron migration, were analyzed by hybridization to the GLYCOv2 glycogene array. This custom designed oligonucleotide array focuses on glycosyl transferases, carbohydrate-binding proteins, proteoglycans and related genes, and 173 genes were identified as being differentially expressed with statistical confidence. Expression levels for 11 of these genes were compared by RT-PCR, and their differential expression between P7 and adult cerebellum confirmed. Within the group of genes showing differential expression, the sialyltransferases (SiaTs) and GalNAc-Ts that were elevated at P7 prefer glycoprotein substrates, whilst the SiaTs and GalNAc-Ts that were elevated in the adult preferentially modify glycolipids, consistent with a role for gangliosides in maintaining neuronal function in the adult. Also within this group, three proteoglycans--versican, bamacan and glypican-2--were elevated at P7, along with growth factor midkine, which is known to bind to multiple types of proteoglycans, and fibroblast growth factor receptor 1, whose activity is known to be influenced by heparan sulfate proteoglycans. Two sulfotransferases that can modify the extent of proteoglycan sulfation were also differentially regulated, and may modify the interaction of a subset of proteoglycans with their binding partners during cerebellar development. Bamacan, glypican-2 and midkine were shown to be expressed in different cell types, and their roles in cerebellar development during granule neuron migration and maturation are discussed. 相似文献
75.
Guttenberg G Hornei S Jank T Schwan C Lü W Einsle O Papatheodorou P Aktories K 《The Journal of biological chemistry》2012,287(30):24929-24940
TpeL is a member of the family of clostridial glucosylating toxins produced by Clostridium perfringens type A, B, and C strains. In contrast to other members of this toxin family, it lacks a C-terminal polypeptide repeat domain, which is suggested to be involved in target cell binding. It was shown that the glucosyltransferase domain of TpeL modifies Ras in vitro by mono-O-glucosylation or mono-O-GlcNAcylation (Nagahama, M., Ohkubo, A., Oda, M., Kobayashi, K., Amimoto, K., Miyamoto, K., and Sakurai, J. (2011) Infect. Immun. 79, 905-910). Here we show that TpeL preferably utilizes UDP-N-acetylglucosamine (UDP-GlcNAc) as a sugar donor. Change of alanine 383 of TpeL to isoleucine turns the sugar donor preference from UDP-GlcNAc to UDP-glucose. In contrast to previous studies, we show that Rac is a poor substrate in vitro and in vivo and requires 1-2 magnitudes higher toxin concentrations for modification by TpeL. The toxin is autoproteolytically processed in the presence of inositol hexakisphosphate (InsP(6)) by an intrinsic cysteine protease domain, located next to the glucosyltransferase domain. A C-terminally extended TpeL full-length variant (TpeL1-1779) induces apoptosis in HeLa cells (most likely by mono-O-GlcNAcylation of Ras), and inhibits Ras signaling including Ras-Raf interaction and ERK activation. In addition, TpeL blocks Ras signaling in rat pheochromocytoma PC12 cells. TpeL is a glucosylating toxin, which modifies Ras and induces apoptosis in target cells without having a typical C-terminal polypeptide repeat domain. 相似文献
76.
77.
Gornati R Chini V Rimoldi S Meregalli M Schiaffino E Bernardini G 《Molecular and cellular biochemistry》2007,298(1-2):59-68
By qualitative and quantitative PCR, we evaluated the expression of three messengers coding for SAT-1, SAT-2 and GalNAcT-1
in human samples of intestinal cancer and some cell lines (breast cancer and melanomas). Qualitative PCR demonstrated, in
human tissues but not in the cell lines examined, the presence of an mRNA that lacks hexon 3; experiments performed on transfected
SKMEL-28 excluded a regulative role of this noncanonical mRNA. Data from real-time PCR, statistically analysed by ANOVA indicated
that the mRNA expression of all the considered glycosyltransferases (SAT-1, SAT-2 and GalNAcT-1) was significantly different
in tumours versus their own control. The ganglioside patterns in the examined samples did not correlate with mRNA expression;
this finding demonstrates that ganglioside expression is the result of a very complex balance between anabolic and catabolic
enzyme activities.
Although this study is still preliminary, it opens a new possibility for neoplastic prognosis finding potential molecular
markers among the mRNAs that codify for glycosyltransferases. 相似文献
78.
79.
Hudson H. Freeze 《The Journal of biological chemistry》2013,288(10):6936-6945
Nearly 70 inherited human glycosylation disorders span a breathtaking clinical spectrum, impacting nearly every organ system and launching a family-driven diagnostic odyssey. Advances in genetics, especially next generation sequencing, propelled discovery of many glycosylation disorders in single and multiple pathways. Interpretation of whole exome sequencing results, insights into pathological mechanisms, and possible therapies will hinge on biochemical analysis of patient-derived materials and animal models. Biochemical diagnostic markers and readouts offer a physiological context to confirm candidate genes. Recent discoveries suggest novel perspectives for textbook biochemistry and novel research opportunities. Basic science and patients are the immediate beneficiaries of this bidirectional collaboration. 相似文献
80.
Yoichiro Harada Reto Buser Elsy M. Ngwa Hiroto Hirayama Markus Aebi Tadashi Suzuki 《The Journal of biological chemistry》2013,288(45):32673-32684
Asparagine (N)-linked glycosylation regulates numerous cellular activities, such as glycoprotein quality control, intracellular trafficking, and cell-cell communications. In eukaryotes, the glycosylation reaction is catalyzed by oligosaccharyltransferase (OST), a multimembrane protein complex that is localized in the endoplasmic reticulum (ER). During N-glycosylation in the ER, the protein-unbound form of oligosaccharides (free oligosaccharides; fOSs), which is structurally related to N-glycan, is released into the ER lumen. However, the enzyme responsible for this process remains unidentified. Here, we demonstrate that eukaryotic OST generates fOSs. Biochemical and genetic analyses using mutant strains of Saccharomyces cerevisiae revealed that the generation of fOSs is tightly correlated with the N-glycosylation activity of OST. Furthermore, we present evidence that the purified OST complex can generate fOSs by hydrolyzing dolichol-linked oligosaccharide, the glycan donor substrate for N-glycosylation. The heterologous expression of a single subunit of OST from the protozoan Leishmania major in S. cerevisiae demonstrated that this enzyme functions both in N-glycosylation and generation of fOSs. This study provides insight into the mechanism of PNGase-independent formation of fOSs. 相似文献