首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6277篇
  免费   718篇
  国内免费   590篇
  2024年   32篇
  2023年   209篇
  2022年   274篇
  2021年   444篇
  2020年   493篇
  2019年   637篇
  2018年   397篇
  2017年   237篇
  2016年   282篇
  2015年   266篇
  2014年   391篇
  2013年   464篇
  2012年   274篇
  2011年   318篇
  2010年   211篇
  2009年   262篇
  2008年   265篇
  2007年   265篇
  2006年   219篇
  2005年   227篇
  2004年   184篇
  2003年   171篇
  2002年   144篇
  2001年   75篇
  2000年   68篇
  1999年   75篇
  1998年   65篇
  1997年   59篇
  1996年   54篇
  1995年   47篇
  1994年   44篇
  1993年   48篇
  1992年   32篇
  1991年   30篇
  1990年   31篇
  1989年   23篇
  1988年   28篇
  1987年   23篇
  1986年   30篇
  1985年   26篇
  1984年   29篇
  1983年   19篇
  1982年   24篇
  1981年   16篇
  1980年   22篇
  1979年   7篇
  1978年   11篇
  1977年   6篇
  1976年   7篇
  1974年   6篇
排序方式: 共有7585条查询结果,搜索用时 15 毫秒
151.
Recent studies have shown that tumour necrosis factor‐α–induced protein 8 like‐1(TIPE1) plays distinct roles in different cancers. TIPE1 inhibits tumour proliferation and metastasis in a variety of tumours but acts as an oncogene in cervical cancer. The role of TIPE1 in nasopharyngeal carcinoma (NPC) remains unknown. Interestingly, TIPE1 expression was remarkably increased in NPC tissue samples compared to adjacent normal nasopharyngeal epithelial tissue samples in our study. TIPE1 expression was positively correlated with that of the proliferation marker Ki67 and negatively correlated with patient lifespan. In vitro, TIPE1 inhibited autophagy and induced cell proliferation in TIPE1‐overexpressing CNE‐1 and CNE‐2Z cells. In addition, knocking down TIPE1 expression promoted autophagy and decreased proliferation, whereas overexpressing TIPE1 increased the levels of pmTOR, pS6 and P62 and decreased the level of pAMPK and the LC3B. Furthermore, the decrease in autophagy was remarkably rescued in TIPE1‐overexpressing CNE‐1 and CNE‐2Z cells treated with the AMPK activator AICAR. In addition, TIPE1 promoted tumour growth in BALB/c nude mice. Taken together, results indicate that TIPE1 promotes NPC progression by inhibiting autophagy and inducing cell proliferation via the AMPK/mTOR signalling pathway. Thus, TIPE1 could potentially be used as a valuable diagnostic and prognostic biomarker for NPC.  相似文献   
152.
153.
Serpinb6b is a novel member of Serpinb family and found in germ and somatic cells of mouse gonads, but its physiological function in uterine decidualization remains unclear. The present study revealed that abundant Serpinb6b was noted in decidual cells, and advanced the proliferation and differentiation of stromal cells, indicating a creative role of Serpinb6b in uterine decidualization. Further analysis found that Serpinb6b modulated the expression of Mmp2 and Mmp9. Meanwhile, Serpinb6b was identified as a target of Bmp2 regulation in stromal differentiation. Treatment with rBmp2 resulted in an accumulation of intracellular cAMP level whose function in this differentiation program was mediated by Serpinb6b. Addition of PKA inhibitor H89 impeded the Bmp2 induction of Serpinb6b, whereas 8‐Br‐cAMP rescued the defect of Serpinb6b expression elicited by Bmp2 knock‐down. Attenuation of Serpinb6b greatly reduced the induction of constitutive Wnt4 activation on stromal cell differentiation. By contrast, overexpression of Serpinb6b prevented this inhibition of differentiation process by Wnt4 siRNA. Moreover, blockage of Wnt4 abrogated the up‐regulation of cAMP on Serpinb6b. Collectively, Serpinb6b mediates uterine decidualization via Mmp2/9 in response to Bmp2/cAMP/PKA/Wnt4 pathway.  相似文献   
154.
Fine particulate matter (PM2.5) is the primary air pollutant that is able to induce airway injury. Compelling evidence has shown the involvement of IL‐17A in lung injury, while its contribution to PM2.5‐induced lung injury remains largely unknown. Here, we probed into the possible role of IL‐17A in mouse models of PM2.5‐induced lung injury. Mice were instilled with PM2.5 to construct a lung injury model. Flow cytometry was carried out to isolate γδT and Th17 cells. ELISA was adopted to detect the expression of inflammatory factors in the supernatant of lavage fluid. Primary bronchial epithelial cells (mBECs) were extracted, and the expression of TGF signalling pathway‐, autophagy‐ and PI3K/Akt/mTOR signalling pathway‐related proteins in mBECs was detected by immunofluorescence assay and Western blot analysis. The mitochondrial function was also evaluated. PM2.5 aggravated the inflammatory response through enhancing the secretion of IL‐17A by γδT/Th17 cells. Meanwhile, PM2.5 activated the TGF signalling pathway and induced EMT progression in bronchial epithelial cells, thereby contributing to pulmonary fibrosis. Besides, PM2.5 suppressed autophagy of bronchial epithelial cells by up‐regulating IL‐17A, which in turn activated the PI3K/Akt/mTOR signalling pathway. Furthermore, IL‐17A impaired the energy metabolism of airway epithelial cells in the PM2.5‐induced models. This study suggested that PM2.5 could inhibit autophagy of bronchial epithelial cells and promote pulmonary inflammation and fibrosis by inducing the secretion of IL‐17A in γδT and Th17 cells and regulating the PI3K/Akt/mTOR signalling pathway.  相似文献   
155.
Farnesyltransferase (FTase) is an important enzyme that catalyses the modification of protein isoprene downstream of the mevalonate pathway. Previous studies have shown that the tissue of the heart in the suprarenal abdominal aortic coarctation (AAC) group showed overexpression of FTaseβ (FNTB) and the activation of the downstream protein Ras was enhanced. FTase inhibitor (FTI) can alleviate myocardial fibrosis and partly improve cardiac remodelling in spontaneously hypertensive rats. However, the exact role and mechanism of FTase in myocardial hypertrophy and remodelling are not fully understood. Here, we used recombinant adenovirus to transfect neonatal rat ventricular cardiomyocytes to study the effect of FNTB overexpression on myocardial remodelling and explore potential mechanisms. The results showed that overexpression of FNTB induces neonatal rat ventricular myocyte hypertrophy and reduces the survival rate of cardiomyocytes. FNTB overexpression induced a decrease in mitochondrial membrane potential and increased apoptosis in cardiomyocytes. FNTB overexpression also promotes autophagosome formation and the accumulation of autophagy substrate protein, LC3II. Transmission electron microscopy (TEM) and mCherry‐GFP tandem fluorescent‐tagged LC3 (tfLC3) showed that FNTB overexpression can activate autophagy flux by enhancing autophagosome conversion to autophagolysosome. Overactivated autophagy flux can be blocked by bafilomycin A1. In addition, salirasib (a Ras farnesylcysteine mimetic) can alleviate the hypertrophic phenotype of cardiomyocytes and inhibit the up‐regulation of apoptosis and autophagy flux induced by FNTB overexpression. These results suggest that FTase may have a potential role in future treatment strategies to limit the adverse consequences of cardiac hypertrophy, cardiac dysfunction and heart failure.  相似文献   
156.
Sirtuin 5 (SIRT5) is a NAD+‐dependent class III protein deacetylase, and its role in prostate cancer has not yet been reported. Therefore, to explore the diagnosis and treatment of prostate cancer, we investigated the effect of SIRT5 on prostate cancer. Sirtuin 5 was assessed by immunohistochemistry in 57 normal and cancerous prostate tissues. We found that the tissue expression levels of SIRT5 in patients with Gleason scores ≥7 were significantly different from those in patients with Gleason scores <7 (P < .05, R > 0). Further, mass spectrometry and pathway screening experiments showed that SIRT5 regulated the activity of the mitogen‐activated protein kinase (MAPK) pathway, which in turn modulated the expression of MMP9 and cyclin D1. Being a substrate of SIRT5, acetyl‐CoA acetyltransferase 1 (ACAT1) was regulated by SIRT5. SIRT5 also regulated MAPK pathway activity through ACAT1. These results revealed that SIRT5 promoted the activity of the MAPK pathway through ACAT1, increasing the ability of prostate cancer cells to proliferate, migrate and invade. Overall, these results indicate that SIRT5 expression is closely associated with prostate cancer progression. Understanding the underlying mechanism may provide new targets and methods for the diagnosis and treatment of the disease.  相似文献   
157.
AMP‐activated protein kinase (AMPK) is an intracellular sensor of energy homoeostasis that is activated under energy stress and suppressed in energy surplus. AMPK activation leads to inhibition of anabolic processes that consume ATP. Osteogenic differentiation is a process that highly demands ATP during which AMPK is inhibited. The bone morphogenetic proteins (BMPs) signalling pathway plays an essential role in osteogenic differentiation. The present study examines the inhibitory effect of metformin on BMP signalling, osteogenic differentiation and trauma‐induced heterotopic ossification. Our results showed that metformin inhibited Smad1/5 phosphorylation induced by BMP6 in osteoblast MC3T3‐E1 cells, concurrent with up‐regulation of Smad6, and this effect was attenuated by knockdown of Smad6. Furthermore, we found that metformin suppressed ALP activity and mineralization of the cells, an event that was attenuated by the dominant negative mutant of AMPK and mimicked by its constitutively active mutant. Finally, administration of metformin prevented the trauma‐induced heterotopic ossification in mice. In conjuncture, AMPK activity and Smad6 and Smurf1 expression were enhanced by metformin treatment in the muscle of injured area, concurrently with the reduction of ALK2. Collectively, our study suggests that metformin prevents heterotopic ossification via activation of AMPK and subsequent up‐regulation of Smad6. Therefore, metformin could be a potential therapeutic drug for heterotopic ossification induced by traumatic injury.  相似文献   
158.
Fibroblast growth factor receptor‐like 1 (FGFRL1), a member of the FGFR family, has been demonstrated to play important roles in various cancers. However, the role of FGFRL1 in small‐cell lung cancer (SCLC) remains unclear. Our study aimed to investigate the role of FGFRL1 in chemoresistance of SCLC and elucidate the possible molecular mechanism. We found that FGFRL1 levels are significantly up‐regulated in multidrug‐resistant SCLC cells (H69AR and H446DDP) compared with the sensitive parental cells (H69 and H446). In addition, clinical samples showed that FGFRL1 was overexpressed in SCLC tissues, and high FGFRL1 expression was associated with the clinical stage, chemotherapy response and survival time of SCLC patients. Knockdown of FGFRL1 in chemoresistant SCLC cells increased chemosensitivity by increasing cell apoptosis and cell cycle arrest, whereas overexpression of FGFRL1 in chemosensitive SCLC cells produced the opposite results. Mechanistic investigations showed that FGFRL1 interacts with ENO1, and FGFRL1 was found to regulate the expression of ENO1 and its downstream signalling pathway (the PI3K/Akt pathway) in SCLC cells. In brief, our study demonstrated that FGFRL1 modulates chemoresistance of SCLC by regulating the ENO1‐PI3K/Akt pathway. FGFRL1 may be a predictor and a potential therapeutic target for chemoresistance in SCLC.  相似文献   
159.
Microtubule actin cross‐linking factor 1 (Macf1) is a spectraplakin family member known to regulate cytoskeletal dynamics, cell migration, neuronal growth and cell signal transduction. We previously demonstrated that knockdown of Macf1 inhibited the differentiation of MC3T3‐E1 cell line. However, whether Macf1 could regulate bone formation in vivo is unclear. To study the function and mechanism of Macf1 in bone formation and osteogenic differentiation, we established osteoblast‐specific Osterix (Osx) promoter‐driven Macf1 conditional knockout mice (Macf1f/fOsx‐Cre). The Macf1f/fOsx‐Cre mice displayed delayed ossification and decreased bone mass. Morphological and mechanical studies showed deteriorated trabecular microarchitecture and impaired biomechanical strength of femur in Macf1f/fOsx‐Cre mice. In addition, the differentiation of primary osteoblasts isolated from calvaria was inhibited in Macf1f/fOsx‐Cre mice. Deficiency of Macf1 in primary osteoblasts inhibited the expression of osteogenic marker genes (Col1, Runx2 and Alp) and the number of mineralized nodules. Furthermore, deficiency of Macf1 attenuated Bmp2/Smad/Runx2 signalling in primary osteoblasts of Macf1f/fOsx‐Cre mice. Together, these results indicated that Macf1 plays a significant role in bone formation and osteoblast differentiation by regulating Bmp2/Smad/Runx2 pathway, suggesting that Macf1 might be a therapeutic target for bone disease.  相似文献   
160.
A water‐soluble polysaccharide (APP‐AW) was isolated from Agrimonia pilosa and prepared to three sulphated derivatives (S1, S2 and S3). The results showed that pre‐treatment with APP‐AW, S1, S2 and S3 each at the concentration of 50 μg/mL for 48 hours was able to prevent cytotoxicity induced by 1 μmol/L dexamethasone (Dex) in MC3T3‐E1 cells via inhibition of apoptosis, which is in line with the findings in flow cytometry analysis. Meanwhile, the decreased ALP activity, collagen content, mineralization, BMP2, Runx2, OSX and OCN protein expression in DEX‐treated MC3T3‐E1 cells were reversed by the addition of APP‐AW, S1, S2 and S3. Moreover, APP‐AW, S1, S2 and S3 rescued DEX‐induced increase of Bax, cytochrome c and caspase‐3 and decrease of Bcl‐2, Wnt3, β‐catenin and c‐Myc protein expression in MC3T3‐E1 cells. Our findings suggest that pre‐treatment with APP‐AW, S1, S2 and S3 could significantly protect MC3T3‐E1 cells against Dex‐induced cell injury via inhibiting apoptosis and activating Wnt/β‐Catenin signalling pathway, thus application of these polysaccharides may be a promising alternative strategy for steroid‐induced avascular necrosis of the femoral head (SANFH) therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号