首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  国内免费   1篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1981年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
11.
12.
Monochlorobimane (MCB) is often used to visualize glutathione (GSH) levels in cultured cells, since it is quickly converted to a fluorescent GSH conjugate (GS–MCB). To test for consequences of MCB application on the GSH metabolism of astrocytes, we have studied rat astrocyte-rich primary cultures as model system. MCB caused a concentration dependent rapid decrease in the cellular GSH content. Simultaneously, a transient accumulation of GS–MCB in the cells was observed with a maximal content 5 min after MCB application. The cellular accumulation was followed by a rapid release of GS–MCB into the medium with a maximal initial export rate of 27.9 ± 6.5 nmol h−1 mg protein−1. Transporters of the family of multidrug resistance proteins (Mrps) are likely to be involved in this export, since the Mrp inhibitor MK571 lowered the export rate by 60%. These data demonstrate that, due to its rapid export from astrocytes, GS–MCB is only under well-defined conditions a reliable indicator of the cellular GSH concentration and that MK571 can be used to maintain maximal GS–MCB levels in astrocytes.  相似文献   
13.
Modifications of metabolic pathways are important in insecticide resistance evolution. Mutations leading to changes in expression levels or substrate specificities of cytochrome P450 (P450), glutathione-S-transferase (GST) and esterase genes have been linked to many cases of resistance with the responsible enzyme shown to utilize the insecticide as a substrate. Many studies show that the substrates of enzymes are capable of inducing the expression of those enzymes. We investigated if this was the case for insecticides and the enzymes responsible for their metabolism. The induction responses for P450s, GSTs and esterases to six different insecticides were investigated using a custom designed microarray in Drosophila melanogaster. Even though these gene families can all contribute to insecticide resistance, their induction responses when exposed to insecticides are minimal. The insecticides spinosad, diazinon, nitenpyram, lufenuron and dicyclanil did not induce any P450, GST or esterase gene expression after a short exposure to high lethal concentrations of insecticide. DDT elicited the low-level induction of one GST and one P450. These results are in contrast to induction responses we observed for the natural plant compound caffeine and the barbituate drug phenobarbital, both of which highly induced a number of P450 and GST genes under the same short exposure regime. Our results indicate that, under the insecticide exposure conditions we used, constitutive over-expression of metabolic genes play more of a role in insect survival than induction of members of these gene families.  相似文献   
14.
Arsenic, an important human toxin, is naturally occurring in groundwater and its accumulation in plants and animals have assumed a menacing proportion in a large part of the world, particularly Asia. Epidemiological studies have shown a strong association between chronic arsenic exposure and various adverse health effects, including cardiovascular diseases, neurological defects and cancer of lung, skin, bladder, liver and kidney. The protective role of the fruits of Emblica officinalis (500 mg/kg b.wt.) was studied in adult Swiss albino mice against arsenic induced hepatopathy. Arsenic treated group (NaAsO2, 4 mg/kg b.wt.) had a significant increase in serum transaminases and lipid peroxidation (LPO) content in liver, whereas significant decrease was recorded in hepatic superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) and serum alkaline phosphatase activity. Combined treatment of Emblica and arsenic (pre and post) declined the serum transaminases and LPO content in liver whereas significant increase was noticed in SOD, CAT, GST and serum alkaline phosphatase activities. Liver histopathology showed that Emblica fruit extract had reduced karyolysis, karyorrhexis, necrosis and cytoplasmic vacuolization induced by NaAsO2 intoxication. Thus it can be concluded that pre- and post-supplementation of E. officinalis fruit extract significantly reduced arsenic induced oxidative stress in liver.  相似文献   
15.
We have recently found that the glutathione-S-transferase -isozyme (GST-), a cellular detoxification enzyme, potently and selectively inhibits activation of jun protein by its upstream kinase, jun kinase (JNK). This newly identified regulatory activity of GST- is strongly inhibited by a group of agents that inhibit its enzymatic activity. Since loss of enzymatic activity in general does not correlate with loss of regulatory activity, it is likely that inhibitor binding induces changes in the structure of one or more domains of GST that block its interaction with JNK. To identify regions of GST that change conformation on the binding of inhibitors, we have performed molecular dynamics calculations on GST- to compute its average structure in the presence and absence of the inhibitor, glutathione sulfonate. Superposition of the two average structures reveals that several regions change local structure depending upon whether the inhibitor is bound or not bound. Two of these regions, residues 36–50 and 194–201, are highly exposed. We have synthesized peptides corresponding to these two segments and find that the 194–201 sequence strongly inhibits the ability of GST- to block the in vitro phosphorylation of jun by JNK. These results suggest that this region of GST- is critical to its functioning as a newly discovered regulator of signal transduction.  相似文献   
16.
The isoelectric point and substrate specificity of the main isoform of glutathione-S-transferase (GST, EC 2.5.1.18) isolated from brain stem, hippocampus and parietal cortex of pig brain were determined. The effect of serotonin, its precursors (Try, 5-HTry), physiologically active derivative (melatonin) and final metabolite (5-HIAA) on the activity of this form was examined. Investigation indicated that serotonin did not affect the activity of GST in all studied regions of brain. The inhibitory effect of Try was stronger than that of 5-HTry, but weaker than the one expressed by melatonin and especially by 5-HIAA. Studies on the type of inhibition showed that Try, melatonin and 5-HIAA can compete for the active site with the electrophilic substrate but not with glutathione. Therefore precursors and endogenous derivatives of serotonin but not serotonin itself may affect the detoxification function of brain glutathione-S-transferase and increase the exposure of brain to toxic electrophiles.  相似文献   
17.
When herbivores come in contact with volatile plant secondary compounds (PSC) that enter the nasal passages the only barrier between the nasal cavity and the brain is the nasal epithelium and the biotransformation enzymes present there. The expression of two biotransformation enzymes Cytochrome P450 2B (CYP2B) and glutathione-S-transferase (GST) was investigated in the nasal epithelia and livers of three populations of woodrats. One population of Neotoma albigula was fed juniper that contains volatile terpenes. Juniper caused upregulation of CYP2B and GST in the nasal epithelium and the expression of CYP2B and GST in the nasal epithelium was correlated to liver expression, showing that the nasal epithelia responds to PSC and the response is similar to the liver. Two populations of Neotoma bryanti were fed creosote that contains less volatile phenolics. The creosote naive animals upregulated CYP2B in their nasal epithelia while the creosote experienced animals upregulated GST. There was no correlation between CYP2B and GST expression in the nasal epithelia and livers of either population. The response of the nasal epithelium to PSC seems to be an evolved response that is PSC and experience dependent.  相似文献   
18.
This study was performed to characterise key data of long-term ovine Se metabolism and to work out the best biomarker of Se status. An upgrade from marginal (<0.05 mg Se/kg diet, ‘Se?’) to sufficient (0.2 mg Se/kg diet, ‘Se+’) nutritional Se supply using sodium selenite was monitered biweekly by analysing Se concentration, glutathione peroxidase (Gpx) activity and routine biochemistry in blood/serum over 2 years. Se, Cu, Zn, cytosolic Gpx and thioredoxin reductase (TrxR) activity were measured in the liver (biopsies/post-mortem). Se, Gpx, TrxR, glutathione-S-transferase-alpha (aGST) and iodothyronine deiodinase (Dio1) were analysed in the kidney, heart muscle and thyroid. Relative mRNA expression of hepatic aGST1 and Gpx1 was determined.Improvement of Se supply strongly increased serum and liver Se concentration within 10 and 20 days, respectively followed by a plateau. Whereas the achievement of a maximum whole blood Gpx activity was reached after 3 months, serum Gpx3 activity increased with high variations. Hepatic Gpx activity reached a maximum during days 100–200, decreasing thereafter. Distinct group differences in Se and cytosolic Gpx activity were evident in all organs (except Se in kidney). TrxR and Dio1 activity was affected only in the liver. The Se? sheep showed an ongoing decrease in serum Se concentration within 2 years, whereas liver Se remained almost unaffected. High relative Gpx1 mRNA expression in the Se+ group was consensual to high hepatic Gpx activity. Relative mRNA expression of hepatic aGST1 was higher in the Se? sheep. Clinical signs and abnormalities in routine biochemistry were absent.In summary, the best biomarker of Se deprivation and nutritional Se upgrade, respectively was Se in serum. Moreover, hepatic Se concentrations reliably reflected the upgrade of Se supply within days. Whole blood Gpx reacts slowly depending on newly formed erythrocytes restricting its diagnostic use. Vital organs are affected by Se deficiency due to a decrease of cytosolic Gpx activity attenuating the antioxidative system. Cellular up-regulation of aGST1 mRNA expression in the Se? group is assumed to partially compensate for the decreased antioxidant defence due to a loss in Gpx activity. This sheep model appears advantageous for long-term studies on sub-clinical metabolic effects in experimental modifiable nutritional Se supply.  相似文献   
19.
Hypoxia represents a major physiological challenge for prawn culture, and the hepatopancreas plays an important role in these processes. Here, we applied high-throughput sequencing technology to detect the gene expression profile of the hepatopancreas in Macrobrachium nipponense in response to hypoxia for 3 h and hypoxia for 24 h. Gene expression profiling identified 1925 genes that were significantly up- or down-regulated by dissolved oxygen availability. Functional categorization of the differentially expressed genes revealed that oxygen transport, electron transport chain, reactive oxygen species generation/scavenging, and immune response were the differentially regulated processes occurring during environmental hypoxia. Finally, quantitative real-time polymerase chain reaction using six genes independently verified the tag-mapped results. Immunohistochemistry analysis revealed, for the first time, hemocyanin protein expression as significant hypoxia-specific signature in prawns, which opens the way for in depth molecular studies of hypoxia exposure. The analysis of changes in hepatic gene expression in oriental river prawn provides a preliminary basis for a better understanding of the molecular response to hypoxia exposures.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号