首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7945篇
  免费   733篇
  国内免费   634篇
  2024年   33篇
  2023年   217篇
  2022年   281篇
  2021年   454篇
  2020年   502篇
  2019年   651篇
  2018年   415篇
  2017年   248篇
  2016年   302篇
  2015年   307篇
  2014年   468篇
  2013年   603篇
  2012年   322篇
  2011年   412篇
  2010年   282篇
  2009年   348篇
  2008年   359篇
  2007年   380篇
  2006年   319篇
  2005年   323篇
  2004年   265篇
  2003年   251篇
  2002年   222篇
  2001年   113篇
  2000年   98篇
  1999年   115篇
  1998年   103篇
  1997年   90篇
  1996年   87篇
  1995年   92篇
  1994年   67篇
  1993年   61篇
  1992年   43篇
  1991年   44篇
  1990年   44篇
  1989年   38篇
  1988年   39篇
  1987年   28篇
  1986年   36篇
  1985年   29篇
  1984年   45篇
  1983年   35篇
  1982年   35篇
  1981年   24篇
  1980年   25篇
  1979年   12篇
  1978年   11篇
  1977年   6篇
  1976年   8篇
  1974年   6篇
排序方式: 共有9312条查询结果,搜索用时 156 毫秒
121.
122.
L-缬氨酸作为一种支链氨基酸,广泛应用于医药和饲料等领域。本研究借助多种代谢工程策略相结合的方法,构建了生产L-缬氨酸的微生物细胞工厂,实现了L-缬氨酸的高效生产。首先,通过增强糖酵解途径、减弱副产物代谢途径相结合的方式,强化了L-缬氨酸合成前体丙酮酸的供给;其次,针对L-缬氨酸合成路径关键酶—乙酰羟酸合酶进行定点突变,提高了菌株的抗反馈抑制能力,并利用启动子工程策略,优化了路径关键酶的基因表达水平;最后,利用辅因子工程策略,改变了乙酰羟酸还原异构酶和支链氨基酸转氨酶的辅因子偏好性,由偏好NADPH转变为偏好NADH,从而提高了L-缬氨酸的合成能力。在5L发酵罐中,最优谷氨酸棒杆菌工程菌株Corynebacterium glutamicum K020的L-缬氨酸产量、得率和生产强度分别达到了110g/L、0.51g/g和2.29 g/(L·h)。  相似文献   
123.
BackgroundCopper is a micronutrient vital to several cellular energy metabolic processes and drives erythropoiesis. However, it disrupts cellular biological activities and causes oxidative damage when in excess of cellular needs. This study investigated the effects of copper toxicity on erythrocyte energy metabolism in male Wistar rats.MethodsTen Wistar rats (150–170 g) were randomly divided into 2 groups: control (given 0.1 ml distilled water) and copper toxic (given 100 mg/kg copper sulphate). Rats were orally treated for 30 days. Blood, collected retro-orbitally after sodium thiopentone anaesthesia (50 mg/kg i.p.) into fluoride oxalate and EDTA bottles, was subjected to blood lactate assay and extraction of red blood cell respectively. Red blood cell nitric oxide (RBC NO), glutathione (RBC GSH), adenosine triphosphate (RBC ATP) levels, RBC hexokinase, glucose-6-phosphate (RBC G6P), glucose-6-phosphate dehydrogenase (RBC G6PDH), and lactate dehydrogenase (RBC LDH) activity was estimated spectrophotometrically. Values (Mean±SEM, n = 5) were compared by Student’s unpaired T-test at p < 0.05.Results and conclusionCopper toxicity significantly increased RBC hexokinase (23.41 ± 2.80 µM), G6P (0.48 ± 0.03 µM), G6PDH (71.03 ± 4.76nmol/min/ml) activities, ATP (624.70 ± 57.36 µmol/gHb) and GSH (3.08 ± 0.37 µM) level compared to control (15.28 ± 1.37 µM, 0.35 ± 0.02 µM, 330.30 ± 49.58 µmol/gHb, 54.41 ± 3.01nmol/min/ml and 2.05 ± 0.14 µM respectively, p < 0.05). Also, RBC LDH activity (145.00 ± 19.88mU/ml), NO (3.45 ± 0.25 µM) and blood lactate (31.64 ± 0.91 mg/dl) level were lowered significantly compared to control (467.90 ± 94.23mU/ml, 4.48 ± 0.18 µM and 36.12 ± 1.06 mg/dl respectively). This study shows that copper toxicity increases erythrocyte glycolytic rate and glutathione production. This increase could be connected to a compensatory mechanism for cellular hypoxia and increased free radical generation.  相似文献   
124.
125.
Plant growth-promoting rhizobacteria (PGPR) can help plants to resist drought stress. However, the mechanisms of how PGPR inoculation affect plant status under drought remain incompletely understood. We performed a meta-analysis of plant response to PGPR inoculation by compiling data from 57 PGPR-inoculation studies, including 2, 387 paired observations on morphological, physiological and biochemical parameters under drought and well-watered conditions. We compare the PGPR effect on plants performances among different groups of controls and treatments. Our results reveal that PGPR enables plants to restore themselves from drought-stressed to near a well-watered state, and that C4 plants recover better from drought stress than C3 plants. Furthermore, PGPR is more effective underdrought than well-watered conditions in increasing plant biomass, enhancing photosynthesis and inhibiting oxidant damage, and the responses of C4 plants to the PGPR effect was stronger than that of C3 plants under drought conditions. Additionally, PGPR belonging to different taxa and PGPR with different functional traits have varying degrees of drought-resistance effects on plants. These results are important to improve our understanding of the PGPR beneficial effects on enhanced drought-resistance of plants.  相似文献   
126.
127.
At low concentrations ethanol is metabolized largely by alcohol dehydrogenase to acetaldehyde, while at higher concentrations a microsomal ethanol oxidising system (MEOS) is involved, namely cytochrome P450 IIE1, which also probably generates free radical species. In hyperthyroidism hepatic glutathione stores are depleted and net superoxide anion production occurs. In contrast, in hypothyroidism hepatic glutathione may be increased and thus renders the liver less sensitive to alcohol generated free radical production. Steroid hormones inhibit lipid peroxidation. Sixty male Wistar rats either underwent thyroidectomy, adrenalectomy, or sham procedures. Twenty control animals were pair fed with thyroidectomized animals, whilst another twenty fed ad libitum. An intraperitoneal injection of alcohol (75 mmol/kg) was given 2.5 h prior to sacrifice to half the animals in each group, the remainder receiving saline. The total hepatic glutathione contents of the pair fed and the ad libitum groups were not different, but were significantly increased by thyroidectomy (p = <0.001). This effect was significantly reduced by alcohol (p < 0.01). The sham procedures and dietary restrictions had no effect. The ethanol alone reduced total hepatic glutathione, but this only reached statistical significance in the thyroidectomized and sham-adrenalectomized groups. Hepatic malonaldehyde (MDA) levels were significantly reduced in the thyroidectomy group but alcohol had no effect on them. We conclude that hypothyroidism increased hepatic glutathione status, presumably by reducing radical production by enzyme systems, which would otherwise consume this important scavenger. Long term exposure to ethanol with induction of MEOS is probably required for it to generate toxic levels of free radical species.  相似文献   
128.
We have used [2-13C]d-glucose and carbon-13 nuclear magnetic resonance (NMR) spectroscopy to investigate metabolic fluxes through the major pathways of glucose metabolism in intact human erythrocytes and to determine the interactions among these pathways under conditions that perturb metabolism. Using the method described, we have been able to measure fluxes through the pentose phosphate pathway, phosphofructokinase, the 2,3-diphosphoglycerate bypass, and phosphoglycerate kinase, as well as glucose uptake, concurrently and in a single experiment. We have measured these fluxes in normal human erythrocytes under the following conditions: (1) fully oxygenated; (2) treated with methylene blue; and (3) deoxygenated. This method makes it possible to monitor various metabolic effects of stresses in normal and pathological states. Not only has 13C-NMR spectroscopy proved to be a useful method for measuring in vivo flux through the pentose phosphate pathway, but it has also provided additional information about the cycling of metabolites through the non-oxidative portion of the pentose phosphate pathway. Our evidence from experiments with [1-13C]-, [2-13C]-, and [3-13C]d-glucoses indicates that there is an observable reverse flux of fructose 6-phosphate through the reactions catalyzed by transketolase and transaldolase, even in the presence of a net flux through the pentose phosphate pathway.  相似文献   
129.
Historically, it has been theorized that the oxidant sensitivity of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes arises as a direct consequence of an inability to maintain cellular gluthione (GSH) levels. This study alternatively hypothesizes that decreased NADPH concentration leads to impaired to catalase activity which, in turn, underlies the observed oxidant susceptibility. To investigate this hypothesis, normal and G6PD-deficient erythrocytes and hemolysates were challenged with a H2O2-generating agent. The results of this study demonstrated that catalase activity was severely impaired upon H2O2 challenge in the G6PD-deficient cell whiel only decrease was observed in normal cells. Supplmentation of either normal or G6PD-deficient hemolysates with purified NADPH was found to significantly (P < 0.001) inhibit catalase inactivation upon oxidant challenge while addition of NADP+ had no effect. Analysis of these results demonstrated direct correlation between NADPH concentration and catalase activity (r = 0.881) and an inverse correlation between catalase activity and erythrocyte oxidant sensitivity (r = 0.906). In contrast, no correlation was found to exist between glutathione concentration (r = 0.170) and oxidant sensitivity. Analysis of NADPH/NADPt ration in acatalasemic mouse erythrocytes demonstrated that NADPH maintenance alone was not sufficient to explain oxidant resistance, and that catalase activity was required. This study supports the hypothesis that impaired catalase activity underlies the enhanced oxidant sensitivity of G6PD-deficient erythrocytes and elucidates the importance of NADPH in the maintenance of normal catalase activity.  相似文献   
130.
木栓酮及其衍生物在植物中普遍存在且种类繁多,具有丰富的生理药理学活性。木栓酮衍生物是以木栓酮为骨架经细胞色素氧化酶P450(cytochromeP450,CYP450)及UDP葡萄糖醛酸转移酶(UDP-glucuronosyltransferase, UGT)修饰而来。植物中天然木栓酮及其衍生物的含量极低,传统的萃取分离和化学合成效率低、能耗高且污染环境,因此,利用酿酒酵母作为宿主菌生产木栓酮及其衍生物是一种高效且环保的策略。本文从增加前体含量、提高酶活性和产物合成的亚细胞定位等方面介绍并展望了木栓酮在酿酒酵母中高效生产的策略,并介绍了目前几种常见的木栓酮衍生物研究现状,从根据碳骨架相似性挖掘CYP450、蛋白质工程改造CYP450和合成代谢基因簇的挖掘等方面展望了木栓酮衍生物的合成途径解析的新思路。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号