首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2229篇
  免费   24篇
  国内免费   62篇
  2315篇
  2023年   11篇
  2022年   16篇
  2021年   21篇
  2020年   19篇
  2019年   24篇
  2018年   30篇
  2017年   20篇
  2016年   27篇
  2015年   48篇
  2014年   113篇
  2013年   193篇
  2012年   72篇
  2011年   133篇
  2010年   82篇
  2009年   110篇
  2008年   113篇
  2007年   142篇
  2006年   135篇
  2005年   126篇
  2004年   100篇
  2003年   104篇
  2002年   96篇
  2001年   52篇
  2000年   43篇
  1999年   52篇
  1998年   40篇
  1997年   40篇
  1996年   48篇
  1995年   53篇
  1994年   32篇
  1993年   20篇
  1992年   18篇
  1991年   18篇
  1990年   15篇
  1989年   18篇
  1988年   14篇
  1987年   7篇
  1986年   11篇
  1985年   6篇
  1984年   22篇
  1983年   22篇
  1982年   16篇
  1981年   13篇
  1980年   7篇
  1979年   6篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有2315条查询结果,搜索用时 9 毫秒
61.
Six chronic uremic patients on regular hemodialysis treatment were given recombinant human erythropoietin (r-huEPO) in a dose of 50 U/kg of body weight intravenously thrice weekly for 14 weeks. Following r-huEPO therapy, unstimulated whole blood superoxide anion ( 2) generation did not change significantly, while opsonized zymosan-stimulated whole blood 2 generation increased. At the same time, erythrocyte superoxide dismutase and, in particular, glutathione peroxidase activities were found to be reducing with concomitant lowering of erythrocyte malonydialdehyde (MDA) concentrations and increase in plasma MDA concentrations.  相似文献   
62.
W.P. Michalski  Z. Kaniuga 《BBA》1981,635(1):25-37
1. The role of tocopherols in tomato chloroplasts from fresh, cold and dark-stored as well as stored and illuminated leaves was studied.2. The cold and dark storage of leaves results in a loss of chloroplast α- and γ-tocopherols of about 30–40% accompanied by an increase in chloroplast δ-tocopherol of about 40%. On illumination of stored leaves, an elevation of α- and γ-tocopherol level to about 110 and 95% of the control, respectively, occurs, whilst δ-tocopherol content is not affected.3. Experiments performed with 2,2-diphenyl-1-picrylhydrazyl-treated chloroplasts show that only about 70% of total α-tocopherol is functionally active in the electron transport of Photosystem II between the diphenyl-carbazide (DPC) donation site and the inhibition site of DBMIB.4. A small amount of α-tocopherol quinone (about 10% of α-tocopherol content) is found in chloroplasts from fresh, fresh and illuminated as well as cold and dark-stored tomato leaves, whereas the illumination of the latter increases the chloroplast α-tocopherol quinone content 3-fold. Moreover, following the illumination of chloroplasts from cold and dark-stored as well as stored and illuminated leaves, the oxidation of exogenous α-tocopherol to α-tocopherol quinone is 2-fold faster then in chloroplasts from fresh leaves.5. The primary product (‘α-tocopheroxide’) formed during the α-tocopherol oxidation by illuminated chloroplasts was identified as 8a-hydroxy-α-tocopheron.6. Exogenous α-tocopherol inhibits the lipid photoperoxidation by about 40–50% in chloroplasts from all three kinds of tomato leaf.7. The results seem to suggest that chloroplast α-tocopherol is involved in both electron transport of PS II and antioxidizing system of chloroplasts.  相似文献   
63.
Abstract: Homogenates of perfused rat brain generated oxidized glutathione from reduced glutathione during incubation with dopamine or serotonin. This activity was blocked by pargyline. a monoamine oxidase inhibitor, or by catalase, a scavenger of hydrogen peroxide. These results demonstrate formation of hydrogen peroxide by monoamine oxidase and the coupling of the peroxide to glutathione peroxidase activity. Oxidized glutathione was measured fluorometrically via the oxidation of NADPH by glutathione reductase. In the absence of added dopamine or serotonin, a much smaller amount of reduced glutathione was oxidized: this activity was blocked by catalase, but not by pargyline. Therefore, endogenous production of hydrogen peroxide, not linked to monoamine oxidase activity, was present. These results indicate that glutathione peroxidase (linked to hexose monophosphate shunt activity) can function to eliminate hydrogen peroxide generated by monoamine oxidase and other endogenous sources in aminergic neurons.  相似文献   
64.
Leukocytes incubated with Cu(II) showed a decrease in both glutathione reductase activity and reduced glutathione content. The glucose 6-phosphate dehydrogenase activity under the same conditions was not affected. Serum albumin added to mixtures prevented the loss of enzyme activity, whiled-penicillamine andl-histidine had little effect. Prior oxidation of the cell-reduced glutathione did not diminish the enzyme inhibitory action of Cu(II). The amount of regeneration of reduced glutathione in leukocytes previously treated with diamide to oxidize their reduced glutathione was a function of Cu(II) concentration in the media. No evidence was obtained that elevated serum ceruloplasmin levels in rabbits, nor incubation of leukocytes in vitro with ceruloplasmin, affect leukocyte glutathione reductase activity. It was proposed that the major mechanism by which copper affects glutathione metabolism in leukocytes is by inhibition of glutathione reductase.  相似文献   
65.
The increased iron content in livers from iron-loaded rats is almost exclusively confined to the mitochondria. The ten- to twenty-fold higher level of nonheme iron in such mitochondria decreases the respiratory control with pyruvate-malate, but not with 3-hydroxybutyrate or succinate as substrates, and has no effect on the capacity for phosphorylation and substrate oxidation. Iron-loaded mitochondria have a malondialdehyde level which is about three times higher than that of control mitochondria, even after repeated washings with bovine serum albumin and EDTA. This is suggestive of an on-going process of lipid oxidation presumably catalyzed by the accumulated iron. Differences between the present in vivo data and in vitro results obtained by others are discussed.  相似文献   
66.
Summary. To identify kidney glutathione S-transferase (GST) isoenzyme, which does not bind to glutathione affinity column, biochemical characterization was performed by using an array of substrates and by measuring sensitivity to inhibitors. Immunological characterization was done by immunoblotting. Affinity flow-through GST exhibited activity towards 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and cumene hydroperoxide, typical class α substrates and high sensitivity towards hematin, an α class inhibitor. It cross-reacted with antibodies against α class GST. Affinity flow-through GST in human kidney is an α class member.  相似文献   
67.
Both glutathione and an NADPH-dependent glutathione reductase are present in spinach (Spinacia oleracea L.) chloroplasts. It is proposed that glutathione functions to stabilise enzymes of the Calvin cycle, and it may also act to keep ascorbic acid in chloroplasts in the reduced form.Abbreviations GSH tripeptide glutathione - GSH reduced form of glutathione - GSSG oxidised form of glutathione  相似文献   
68.
The present study was designed to investigate the potential protective effect of melatonin as an antioxidant separately or in combination with antigens (cercarial; CAP or soluble worm; SWAP) against Schistosoma mansoni infection in hamsters. Each hamster was sensitized with an initial immunization of 0.6 ml of the extracted antigen (30 μg protein/mL). After four days,a second injection of 0.4 mL was given (20 μg protein/mL). Then,each hamster was exposed to 260±20 S.mansoni cercariae followed with melatonin...  相似文献   
69.
Abstract: Glutathione peroxidase, glutathione reductase, and catalase activities were measured to 48 h after death in mouse brains held at temperatures replicating the cooling occurring in human cadaver brain. Glutathione peroxidase was stable for 48 h; catalase was stable for 24 h and then declined 20% in activity. Glutathione reductase was stable for 4 h and then decreased to 55% of its initial activity by 48 h. Perfusion of mouse brain with 0.9% (wt/vol) NaCl did not decrease enzyme activities, indicating that erythrocyte contamination has little effect on measured brain activities. The results suggest that glutathione peroxidase would not be affected by moderate time delays in obtaining human postmortem brains but catalase activity may be affected if brains are not promptly removed. Glutathione reductase is not stable and measurements would require controls carefully matched for postmortem conditions.  相似文献   
70.
Cadmium (Cd) is a widespread heavy metal pollutant and environmental and human health hazard, which may be partially resolved using green and cost-effective phytoremediation techniques. However, the efficiency of phytoremediation is often limited by the small biomass of Cd-hyperaccumulator plants. Although cattail (Typha angustifolia L.) is tolerant of heavy metals and has a high biomass, there is little information available on its detoxification mechanisms for heavy metals, especially Cd. In the present study we investigated the tolerance of cattail to Cd and mechanisms involved in its Cd detoxification. Our results show that: (a) cattail is tolerant of Cd; (b) the root Casparian band, cell wall, vacuole, glutathione (GSH), and glutathione peroxidase (GPX) play important roles in Cd detoxification; and (c) mechanisms of Cd detoxification differ in leaf cell cytoplasm (mainly a GSH-related antioxidant defense system) and root cell cytoplasm (mainly a GSH-related chelation system). In summary, cattail possesses multiple detoxification mechanisms for Cd and is a promising species for phytoremediation of Cd-polluted environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号