首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2229篇
  免费   24篇
  国内免费   62篇
  2023年   11篇
  2022年   16篇
  2021年   21篇
  2020年   19篇
  2019年   24篇
  2018年   30篇
  2017年   20篇
  2016年   27篇
  2015年   48篇
  2014年   113篇
  2013年   193篇
  2012年   72篇
  2011年   133篇
  2010年   82篇
  2009年   110篇
  2008年   113篇
  2007年   142篇
  2006年   135篇
  2005年   126篇
  2004年   100篇
  2003年   104篇
  2002年   96篇
  2001年   52篇
  2000年   43篇
  1999年   52篇
  1998年   40篇
  1997年   40篇
  1996年   48篇
  1995年   53篇
  1994年   32篇
  1993年   20篇
  1992年   18篇
  1991年   18篇
  1990年   15篇
  1989年   18篇
  1988年   14篇
  1987年   7篇
  1986年   11篇
  1985年   6篇
  1984年   22篇
  1983年   22篇
  1982年   16篇
  1981年   13篇
  1980年   7篇
  1979年   6篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有2315条查询结果,搜索用时 15 毫秒
41.
Reactive oxygen species may participate in development of neurological toxicity resulting from hyperbaric oxygen exposure. To explore the possibility that increased reactive O2 metabolite generation may result in oxidative modification of lipids and proteins, rats were exposed to five atmospheres (gauge pressure) of O2 until development of an electroencephalographic seizure. Lipid peroxidation (as thiobarbituric acid-reactive substances) and protein oxidation (as 2,4-dinitrophenyl-hydrazones) were measured in five brain regions. Oxidized and reduced glutathione were also determined because of their role in regulating lipid peroxidation. Lipid peroxidation was confined to the frontal cortex and hippocampus, while protein oxidation (in both cytoplasmic and membranous fractions) and increased oxidized glutathione was evident throughout the brain. These results support a role for formation of reactive O2 metabolites from hyperbaric O2 exposure and suggest that protein oxidation, especially in soluble proteins, may be one of the most sensitive measures.  相似文献   
42.
用苯甲基磺酰氟(PMSF)和H_2Se相继处理铜锌超氧化物岐化酶(Cu,Zn-SOD),将酶分子中的丝氨酸(Ser)转化为硒代半胱氨酸(SeCys),从而引入了谷胱甘肽过氧化物酶(GPX)的催化基团,使其在SOD酶活性大部分保留的情况下,具有GPX活性,其GPX活力是PZ51活力的30倍。研究了双功能酶的最佳制备条件,包括PMSF的剂量、反应最适温度及H_2Se处理时间等,并用电子能谱、DTNB等方法测定了双功能酶的硒含量;测定了双功能酶对不同底物的米氏常数及双功能酶的荧光光谱、紫外吸收光谱及稳定性。  相似文献   
43.
Precocene II was more toxic in 24 hour cultures than in 72 hour cultures of rat hepatocytes. In 24 hour cultures, there was no observable toxicity at 75 μM precocene II after exposure for 6 hours, but after 24 hours, 65% of the cells were dead. In contrast, although 794 μM killed 50% of the cells in the 72 hour cultures after a 24 hour exposure, 1 mM killed 96% of the cells within 6 hours. In both 24 and 72 hour cultures, cell death was preceded by a rapid, early loss of mitochondrial membrane potential, followed by decreases in glutathione, reduced pyridine nucleotide status, and plasma membrane Na+/K+-ATPase activity. There was also a rapid loss of ATP in the 72 hour cultures but not in the 24 hour cultures; therefore, onset of cell death may be closely linked to loss of ATP. Inhibition of cytochrome P-450 prevented the toxicity, and partially protected against the loss of membrane potential and glutathione, in 24 hour cultures but was ineffective in 72 hour cultures. Therefore, in addition to depletion of glutathione, precocene II appears to damage mitochondria and plasma membrane functions and can do so by more than one pathway. © 1996 John Wiley & Sons, Inc.  相似文献   
44.
Repletion of depleted cellular reduced glutathione (GSH) levels in oxidative stress and exposure to arylating agents is a strategy for the development of antidotes to chemical toxicity. The effect of GSH, reduced glutathione ethyl monoester (GSHEt), and reduced glutathione ethyl diester (GSHEt2) on the cytotoxicity of hydrogen peroxide, 1-chloro-2,4-dinitrobenzene (CDNB), and menadione to P388D1 macrophages in vitro was investigated. The median toxic concentration TC50 values of the toxicants were hydrogen peroxide 24 ± 2 mM (N = 19), CDNB 63 ± 6 μM (N = 18), and menadione 30 ± 4 μM (N = 22). Reduced glutathione, GSHEt, and GSHEt2 were poor antidotes to hydrogen peroxide toxicity. Indeed, the observed antidote effects were attributed to the nonenzymatic reaction of the GSH derivatives with hydrogen peroxide in the extracellular medium. Reduced glutathione ethyl diester was a more potent antidote of CDNB- and menadione-mediated toxicity than GSHEt and GSH. For cell incubations with the approximate median toxic concentration TC50 values of hydrogen peroxide, CDNB, and menadione, the respective median effective antidote concentration EC50 values were GSHEt 23.8 ± 4.1 mM (N = 9), 3.6 ± 0.6 mM (N = 11), and 226 ± 93 μM (N = 12); and GSHEt2 20.4 ± 1.9 mM (N = 6), 603 ± 2 μM (N = 9), and 7.6 ± 2.3 μM (N = 12). Reduced glutathione ethyl diester was a potent antidote to CDNB- and menadione-induced toxicities but not to hydrogen peroxide-induced toxicity under acute intoxication conditions. © 1996 John Wiley & Sons, Inc.  相似文献   
45.
Lipid peroxidation of membranes by oxygen free radicals has been implicated in various disease states. Different antioxidants and iron chelators have been used to reduce lipid peroxidation. Lazaroids have been used for the acute treatment of central nervous system disorders such as trauma and ischemia wherein lipid peroxidative processes take place.In this study we evaluated the effect of lazaroids (U-785 18F and U-74389F) on the release of acid phosphatase activity and formation of malondialdehyde (MDA) in rat liver lyosomes subjected to exogenously generated oxygen free radicals. There was a significant increase in the acid phosphatase release and MDA formation in the presence of oxygen free radicals. This was prevented by both the lazaroids. In a separate study the effect of lazaroid U-74389F was seen on the zymosan-stimulated polymorphonuclear (PMN) leukocyte-derived chemiluminescence. The PMN leukocyte chemiluminescent activity was attenuated by the lazaroid in a dose-dependent manner. These studies suggest that lazaroids may inhibit lipid peroxidation and stabilize the membrane.  相似文献   
46.
The expression of three classes of glutathione S-transferases (GSTs), Alpha, Mu, and Pi was investigated in the nasal mucosae of rats during development using immunohistochemical methods. GST Alpha and Mu were first detected in the supranuclear region of sustentacular cells on embryonic days 16. The Bowman's glands expressed differential patterns of immunoreactivity during development, beginning at postnatal day (P) 2 and P6 for Alpha and Mu classes, respectively and being greatest at P11 for both. The acinar cells of vomeronasal glands in the vomeronasal organ expressed Alpha and Mu classes of GSTs from P11 onwards. In the septal organ of Masera, the supranuclear region of sustentacular cells expressed GSTs from P11 with little or no variation during development. In the respiratory mucosa, Alpha and Mu classes of GSTs were detected at the brush borders of ciliated cells and in the acinar cells of posterior septal glands, but not in anterior septal or respiratory glands located on the turbinates. Compared to olfactory mucosa, the changes in immunoreactivity for GSTs were less pronounced in the respiratory mucosa during development. Specific GST Pi immunoreactivity was not detected in the nasal mucosae at any stage of development studied. The occurrence of GSTs in the nasal mucosa, including olfactory, vomeronasal, septal, and respiratory epithelia, suggests that the GSTs are actively involved in the biotransformation of xenobiotics including odorants and pheromones, and may also participate in perireceptor processes such as odorant clearance. In addition, we have developed a working model describing the cellular localization of certain phase I (e.g., cytochrome P-450s) and phase II (e.g., GSTs, -glutamyl transpeptidase) biotransformation enzymes in the olfactory mucosa and their proposed roles in xenobiotic metabolism.  相似文献   
47.
The ability of 2-n-propyl-4-pentenoic acid (Δ4-VPA) and 2-n-propyl-2(E)-pentenoic acid ([E]-Δ2-VPA), two unsaturated metabolites of valproic acid (VPA), to form reactive intermediates, deplete hepatic glutathione (GSH) and cause accumulation of liver triglycerides was investigated in the rat. With the aid of ionspray liquid chromatography-tandem mass spectrometry (LC-MS/MS), three GSH adducts were detected in the bile of Δ4-VPA-treated animals and were identified as 4-hydroxy-5-glutathion-S-yl-VPA-γ-lactone, 5-glutathion-S-yl-(E)-Δ3-VPA and 3-oxo-5-glutathion-S-yl-VPA. A fourth conjugate was identified tentatively as 4-glutathion-S-yl-5-hydroxy-VPA. Quantitative analysis of the corresponding N-acetylcysteine (NAC) conjugates in urine indicated that metabolism of Δ4-VPA via the GSH-dependent pathways accounted for approximately 20% of an acute dose (100 mg kg−1 i.p.). In contrast, when rats were given an equivalent dose of (E)-Δ2-VPA, only one GSH adduct (5-glutathion-S-yl-(E)-Δ3-VPA) was detected at low concentrations in bile. In vitro experiments with rat liver mitochondria demonstrated that Δ4-VPA undergoes coenzyme A- and ATP-dependent metabolic activation in this organelle via the β-oxidation pathway to intermediates which bind covalently to proteins. When liver homogenates and hepatic mitochondria from rats injected with Δ4-VPA, (E)-Δ2-VPA or VPA were analyzed for GSH content, it was found that only Δ4-VPA depleted GSH pools significantly. Treatment of rats with Δ4-VPA and (to a lesser extent) VPA led to an accumulation of liver triglycerides, whereas (E)-Δ2-VPA had no measurable effect. It is concluded that Δ4-VPA undergoes metabolic activation by both microsomal cytochrome P-450-dependent and mitochondrial coenzyme A-dependent processes, and that the resulting electrophilic intermediates, which are trapped in part by GSH, may mediate the hepatotoxic effects of this compound. In contrast, (E)-Δ2-VPA is not transformed to any appreciable extent to reactive metabolites, which thus accounts for the apparent lack of hepatotoxicity of this positional isomer in the rat.  相似文献   
48.
Abstract: Nerve growth factor (NGF) is a member of the neuro- trophin family and is required for the survival and maintenance of peripheral sympathetic and sensory ganglia. In the CNS, NGF regulates cholinergic expression by basal forebrain cholinergic neurons. NGF also stimulates cellular resistance to oxidative stress in the PC12 cell line and protects PC12 cells from the toxic effects of reactive oxygen species. The hypothesis that NGF protection involves changes in antioxidant enzyme expression was tested by measuring its effects on catalase and glutathione per- oxidase (GSH Px) mRNA expression in PC12 cells. NGF increased catalase and GSH Px mRNA levels in PC 12 cells in a time- and dose-dependent manner. There was also a corresponding increase in the enzyme activities of catalase and GSH Px. Thus, NGF can provide cytoprotection to PC12 cells by inducing the free radical scavenging enzymes catalase and GSH Px.  相似文献   
49.
Abstract: Plants and the fission yeast Schizosaccharomyces pombe synthesize small cadmium-binding peptides, called phytochelatins, in response to cadmium. Derived from glutathione (GSH: λ-Glu-Cys-Gly), they have the general structure (λ-Glu-Cys) n Gly, where n is 2–11. In order to study the biosynthesis of phytochelatins, we used the mutagen N -methyl- N '-nitro- N nitrosoguanidine (MNNG) to select mutants with a lowered GSH content. GSH-deficient mutants show a Cd-sensitive phenotype, whereas resistance to Cu is only slightly influenced. These Cd-sensitive mutants contain 2–15% of the wild-type GSH level. For three mutants a lowered activity of λ-glutamylcysteine synthetase was measured. One of the mutants was transformed to Cd-resistance and the complementing fragment was analyzed further. The complementing fragment hybridized with chromosome III. In the transformants, GSH content was restored up to wild-type levels, whereas the activity of λ-glutamylcysteine synthetase was significantly increased compared with the wild-type. Possible mechanisms for Cd-resistance in the transformants are discussed.  相似文献   
50.
Abstract: Effects of cadmium (10 nM), copper (80 nM) and zinc (150 nM) additions were studied in the marine diatom Ditylum brightwellii and the riverine diatom Thalassiosira pseudonana . Defense against oxidative stress via cellular thiol (SH) pools and superoxide dismutase (SOD) activation, detoxification via phytochelatins and cell damage were monitored in metal-exposed exponential-phase cells and controls, grown in estuarine medium. Total SH and reduced + oxidized glutathione (GSH + GSSG) in T. pseudonana were much higher than in D. brightwellii . In T. pseudonana , total SH and GSH decreased at 322 nM Zn, and GSH increased at 80 nM Cu but decreased at 119 nM Cu. GSH:GSSG ratios were low, while phytochelatins were not detectable in metal-exposed D. brightwellii . Cd-exposed T. pseudonana made more phytochelatins than Cu-exposed cells, and in different proportions. At 322 nM Zn, SOD activity decreased in T. pseudonana . Zn caused a major, and Cu a minor increase of SOD activity in D. brightwellii ; inhibition of photosynthesis was observed in Cu-exposed D. brightwellii , probably due to oxidative damage. The C:N ratios were higher and protein contents lower in Cu-exposed cells of both species, which might indicate excretion due to a loss of cell membrane integrity. From these results, it is hypothesized that T. pseudonana has evolved an effective detoxification mechanism as a result of a more severe exposure to toxic metals in rivers and estuaries. In contrast, D. brightwellii , a marine-estuarine species, cannot adjust well to metal exposure. Its poor defense against metal toxicity was marked by low SH-contents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号