首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2125篇
  免费   61篇
  国内免费   32篇
  2023年   6篇
  2022年   25篇
  2021年   38篇
  2020年   39篇
  2019年   23篇
  2018年   34篇
  2017年   21篇
  2016年   26篇
  2015年   48篇
  2014年   121篇
  2013年   125篇
  2012年   83篇
  2011年   159篇
  2010年   113篇
  2009年   87篇
  2008年   114篇
  2007年   115篇
  2006年   84篇
  2005年   71篇
  2004年   84篇
  2003年   58篇
  2002年   46篇
  2001年   23篇
  2000年   29篇
  1999年   27篇
  1998年   28篇
  1997年   28篇
  1996年   29篇
  1995年   28篇
  1994年   29篇
  1993年   35篇
  1992年   28篇
  1991年   26篇
  1990年   26篇
  1989年   23篇
  1988年   28篇
  1987年   18篇
  1986年   20篇
  1985年   27篇
  1984年   43篇
  1983年   42篇
  1982年   42篇
  1981年   39篇
  1980年   31篇
  1979年   20篇
  1978年   5篇
  1977年   4篇
  1976年   6篇
  1975年   3篇
  1973年   5篇
排序方式: 共有2218条查询结果,搜索用时 31 毫秒
31.
Cell extracts of Fibrobacter succinogenes subsp. succinogenes S85 phosphorylated glucose with a GTP-dependent glucokinase. The enzyme showed little activity with ATP (12% of that with GTP). Of other phosphate donors tested, only dGTP and ITP gave high glucokinase activities. Dialyzed extracts required Mg+2 and K+ for maximal activity. In potassium phosphate buffer, glucokinase showed maximum activity at pH 7.5 with glucose-6-phosphate dehydrogenase as the coupling enzyme. In this assay, glucokinase was active with glucose (100%), 2-deoxy-d-glucose (40%), and mannose (20%). Partially purified glucokinase had a molecular weight of 82,000 and a pl of 4.82. Double-reciprocal plots of substrate concentration versus velocity were linear and the enzyme had apparent Km values of 55 M for glucose and 72 M for GTP. Dialyzed cell extracts of Fibrobacter intestinalis C1A also contained a GTP-dependent glucokinase that showed little activity with ATP. Potassium also stimulated the activity of this enzyme. These results suggest that this unusual glucokinase may be characteristic of the genus Fibrobacter.Abbreviations CHES cyclohexylaminoethanesulfonic acid - GK glucokinase - PEP phosphoenolpyruvate Published with the approval of the Director of the North Dakota Agricultural Experiment Station as journal article no. 2186  相似文献   
32.
33.
Abstract: Two glucose transport proteins, GLUT1 and GLUT3, have been detected in brain. GLUT1 is concentrated in the endothelial cells of the blood-brain barrier and may be present in neurons and glia; GLUT3 is probably the major neuronal glucose transporter. Of the few studies of glucose transport in the immature brain, none has quantified GLUTS. This study used membrane isolation and immunoblotting techniques to examine the developmental expression of GLUT1 and GLUT3 in four forebrain regions, cerebral microvessels, and choroid plexus, from rats 1–30 days postnatally as compared with adults. The GLUT1 level in whole brain samples was low for 14 days, doubled by 21 days, and doubled again to attain adult levels by 30 days; there was no regional variation. The GLUT3 level in these samples was low during the first postnatal week, increased steadily to adult levels by 21–30 days, and demonstrated regional specificity. The concentration of GLUT1 in microvessels increased steadily after the first postnatal week; the GLUT1 level in choroid plexus was high at birth, decreased at 1 week, and then returned to near fetal levels. GLUT3 was not found in microvessels or choroid plexus. This study indicates that both GLUT1 and GLUT3 are developmentally regulated in rat brain: GLUT1 appears to relate to the nutrient supply and overall growth of the brain, whereas GLUT3 more closely relates to functional activity and neuronal maturation.  相似文献   
34.
The metabolism of wild-type Arabidopsis thaliana L. and its mutant TC265 were compared in order to reveal the role of the chloroplast glucose transporter. Plants were grown in a 12-h photoperiod. From 20 to 40 days after germination, starch per gram fresh weight of shoot in the mutant was four times that in the wild type. The extent of this difference did not alter during this period. Stereological analysis showed that the chloroplasts in the mutant were larger than those in the wild type; the thylakoids appeared to be distorted by the high starch content. [U-14C]Glucose and [U-14C]glycerol were supplied, separately, to excised leaves in the dark. [U-14C]Glucose was a good precursor of sucrose in the wild type and mutant; [U-14C]glycerol was a poor precursor of sucrose in both. The distribution of 14C in the wild type was used to calculate that the net flux was from hexose monophosphates to triose phosphates, not vice versa. During the first 4 h of the night the sugar content (75% sucrose, 20% glucose) of the leaves of the mutant dropped sharply, and at all times during the night it was less than that of the wild-type leaves. This drop in sugar coincided with a decrease in the rate of respiration. The growth rate of the mutant was less than that of the wild type. Addition of sucrose restored the rate of respiration at night and increased the rate of growth. It is argued that a major function of the glucose transporter in Arabidopsis chloroplasts is export of the products of starch breakdown that are destined for sucrose synthesis at night.We thank Professor C.R. Somerville for his generous gift of seed of the Arabidopsis mutant TC265. We are also grateful to Mr B. Chapman for assistance with the preparation of the sections for electron microscopy. R.N.T. thanks the Science and Engineering Research Council for a studentship.  相似文献   
35.
Glucose metabolism in peripheral blood lymphocytes from the brown trout Salmo trutta has been studied. Glucose is taken up by means of a sodium-independent saturable process (K m=10.8 mmol·l-1), as well as by simple diffusion. Once within the cell, most of glucose is directed to lactate production through either the Embden-Meyerhof pathway or the hexose-monophosphate shunt. Rates of lactate formation are higher than rates of CO2 formation. Glutamine does not exert an effect on either glucose uptake or glucose metabolism. The present study provides information regarding the nature of energy sources for different cell types in salmonids.Abbreviations 3-OMG 3-O-methyl glucose - EM Embden-Meyerhoff pathway - G6D glucose-6-phosphate dehydrogenase - HK hexokinase - HMS hexose monophosphate shunt - ICDH isocitrate dehydrogenase - K m apparent Michaelis constant - LDH lactate dehydrogenase - MCB modified Cortland buffer - PBL peripheral blood lymphocytes - PFK fructose-6-phosphate kinase - PK pyruvate kinase - RBC red blood cells - V max maximal rate of uptake  相似文献   
36.
The effects of glutamate, aspartate, glycine, proline, alanine, taurine, glycerol, glucose and lactate injections on the haemolymph levels of the crustancean hyperglycemic hormone and/or glucose and lactate in the shore crab, Carcinus maenas, were investigated. Only glucose and lactate caused significant changes of hyperglycaemic hormone levels. Glucose injections resulted in a drop of both hormone and lactate, while lactate had an opposite effect, i.e. it raised both crustacean hormone and glucose levels. The results suggest that during increases in glycolytic flux, lactate may cause a release of hormone by a positive feedback mechanism. The hormone would then stimulate glycogenolysis, thus increasing glucose availability. If more glucose is released than is metabolized, excess glucose may leak from the cells and suppress crustancean hyperglycemic hormone release from the X-organ/sinus gland complex by negative feedback.Abbreviations ABTS 2,2-azino-bis (3-ethylbenzthiazoline sulphonic acid) - ANOVA one-way analysis of variance - BSA bovine serum albumin - BW body weight - CHH crustacean hyperglycemic hormone - ELISA cnzyme-liked immunosorbent assay - GIH gonadinhibiting hormone - IgG immunoglobin G - MIH moult-inhibiting hormone - MTGXO medulla terminalis X-organ - PB sodium phosphate buffer - PBS phosphate buffered saline - Pi inorganic phosphate - XO-SG X-organ-sinus gland complex  相似文献   
37.
Abstract: Nuclear magnetic resonance (NMR) was used to study the metabolic pathways involved in the conversion of glucose to glutamate, γ-aminobutyrate (GABA), glutamine, and aspartate. d -[1-13C]Glucose was administered to rats intraperitoneally, and 6, 15, 30, or 45 min later the rats were killed and extracts from the forebrain were prepared for 13C-NMR analysis and amino acid analysis. The absolute amount of 13C present within each carbon-atom pool was determined for C-2, C-3, and C-4 of glutamate, glutamine, and GABA, for C-2 and C-3 of aspartate, and for C-3 of lactate. The natural abundance 13C present in extracts from control rats was also determined for each of these compounds and for N-acetylaspartate and taurine. The pattern of labeling within glutamate and GABA indicates that these amino acids were synthesized primarily within compartments in which glucose was metabolized to pyruvate, followed by decarboxylation to acetyl-CoA for entry into the tricarboxylic acid cycle. In contrast, the labeling pattern for glutamine and aspartate indicates that appreciable amounts of these amino acids were synthesized within a compartment in which glucose was metabolized to pyruvate, followed by carboxylation to oxaloacetate. These results are consistent with the concept that pyruvate carboxylase and glutamine synthetase are glia-specific enzymes, and that this partially accounts for the unusual metabolic compartmentation in CNS tissues. The results of our study also support the concept that there are several pools of glutamate, with different metabolic turnover rates. Our results also are consistent with the concept that glutamine and/or a tricarboxylic acid cycle intermediate is supplied by astrocytes to neurons for replenishing the neurotransmitter pool of GABA. However, a similar role for astrocytes in replenishing the transmitter pool of glutamate was not substantiated, possibly due to difficulties in quantitating satellite peaks arising from 13C-13C coupling.  相似文献   
38.
We have used [2-13C]d-glucose and carbon-13 nuclear magnetic resonance (NMR) spectroscopy to investigate metabolic fluxes through the major pathways of glucose metabolism in intact human erythrocytes and to determine the interactions among these pathways under conditions that perturb metabolism. Using the method described, we have been able to measure fluxes through the pentose phosphate pathway, phosphofructokinase, the 2,3-diphosphoglycerate bypass, and phosphoglycerate kinase, as well as glucose uptake, concurrently and in a single experiment. We have measured these fluxes in normal human erythrocytes under the following conditions: (1) fully oxygenated; (2) treated with methylene blue; and (3) deoxygenated. This method makes it possible to monitor various metabolic effects of stresses in normal and pathological states. Not only has 13C-NMR spectroscopy proved to be a useful method for measuring in vivo flux through the pentose phosphate pathway, but it has also provided additional information about the cycling of metabolites through the non-oxidative portion of the pentose phosphate pathway. Our evidence from experiments with [1-13C]-, [2-13C]-, and [3-13C]d-glucoses indicates that there is an observable reverse flux of fructose 6-phosphate through the reactions catalyzed by transketolase and transaldolase, even in the presence of a net flux through the pentose phosphate pathway.  相似文献   
39.
Historically, it has been theorized that the oxidant sensitivity of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes arises as a direct consequence of an inability to maintain cellular gluthione (GSH) levels. This study alternatively hypothesizes that decreased NADPH concentration leads to impaired to catalase activity which, in turn, underlies the observed oxidant susceptibility. To investigate this hypothesis, normal and G6PD-deficient erythrocytes and hemolysates were challenged with a H2O2-generating agent. The results of this study demonstrated that catalase activity was severely impaired upon H2O2 challenge in the G6PD-deficient cell whiel only decrease was observed in normal cells. Supplmentation of either normal or G6PD-deficient hemolysates with purified NADPH was found to significantly (P < 0.001) inhibit catalase inactivation upon oxidant challenge while addition of NADP+ had no effect. Analysis of these results demonstrated direct correlation between NADPH concentration and catalase activity (r = 0.881) and an inverse correlation between catalase activity and erythrocyte oxidant sensitivity (r = 0.906). In contrast, no correlation was found to exist between glutathione concentration (r = 0.170) and oxidant sensitivity. Analysis of NADPH/NADPt ration in acatalasemic mouse erythrocytes demonstrated that NADPH maintenance alone was not sufficient to explain oxidant resistance, and that catalase activity was required. This study supports the hypothesis that impaired catalase activity underlies the enhanced oxidant sensitivity of G6PD-deficient erythrocytes and elucidates the importance of NADPH in the maintenance of normal catalase activity.  相似文献   
40.
As a contribution to their taxonomy, population genetic data on zoo-living anoas are reported, and a review of the history of the captive stock is provided. Four different chromosome numbers of 44, 45, 47 and 48 chromosomes have been found, respectively, when karyotyping captive anoas descending from three breeding lines. The number of chromosome arms is 60 throughout, indicating that Robertsonian rearrangements are responsible for this cytogenetic variation. An electrophoretic comparison of isozymes and blood proteins representing 21 genetic loci revealed polymorphism in seven loci: haemoglobin, glyoxalase, superoxide dismutase, phosphoglucomutase, carbonic anhydrase, glucose phosphate isomerase, and an unidentified acid serum protein. Considering the small number of founder specimens and subsequent inbreeding, allozyme variability appears fairly high in anoas. Genetic distances between zoo populations amount to 0.0505 or less. Southern blot hybridizations of restricted DNA from anoas and African buffaloes with a probe from the DRB-like region of the chimpanzee's MHC class II genes also indicate a low degree of genetic differentiation between mountain and lowland anoas. The relevance of these genetic data for the taxonomic classification of mountain and lowland anoas, and for the conservation of anoas by captive breeding is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号