首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   3篇
  国内免费   1篇
  251篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   8篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   8篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2001年   2篇
  2000年   6篇
  1999年   14篇
  1998年   10篇
  1997年   10篇
  1996年   5篇
  1995年   14篇
  1994年   8篇
  1993年   8篇
  1992年   9篇
  1991年   14篇
  1990年   11篇
  1989年   15篇
  1988年   14篇
  1987年   11篇
  1986年   6篇
  1985年   9篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
  1977年   1篇
  1976年   2篇
排序方式: 共有251条查询结果,搜索用时 15 毫秒
71.
Abstract .Two designs of cross-shaped sticky panels (XT and XLP) were compared with the royal blue–white legpanel (LPBuWh) in the Jozani forest on Unguja Island as trapping devices for male Glossina austeni . Single coloured royal blue (XTBu) and bi-coloured royal blue–white XT (XTBuWh) caught more than twice as many male G. austeni as the LPBuWh, whereas single coloured black XT trapped significantly fewer flies (10%) than the control LPBuWh. XT's in various horizontal and diagonal blue–white configurations likewise trapped more flies than the LPBuWh, except a horizontally striped blue–white XT which trapped fivefold fewer flies than the LPBuWh. Cross-shaped LP in the blue–white (XLPBuWh) and black–white (XLPBlWh) combination scored significantly better than the control LPBuWh. Similar fly numbers were trapped with XTBuWh and XLPBuWh. Long-term trapping data indicated that the XTBu, XTBuWh and XLPBuWh were three- to fourfold more effective in trapping female flies than the LPBuWh.
The landing bias on bi-coloured panels was low in the blue–white but more pronounced in the blue–black and white–black combinations and was affected by the type of sticky panel used. A high proportion (49%) of the flies alighted on the bottom corners of the XTBu panel, but landing positions were more scattered if white was added.
Increasing the width of the XTBu from 70 to 120 cm improved the catch by a factor of two as compared with standard sized XTBu. The effect of doubling the height of the XT on total fly catch was negligible.
At present, it is the XTBu which can be recommended as the best trapping device for male and female G. austeni.  相似文献   
72.
ABSTRACT. Free-flying, wild male and female Glossina pallidipes Aust. and G. m. morsitans Westw. were video-recorded in the field in Zimbabwe as they entered or left the side of a host-odour plume in cross-wind flight, or as they overshot a source of host odour in upwind flight (camera 2.5 m up looking down at a 3 times 2.5 m field of view at ground level). 80% of cross-wind odour leavers turned sharply ( turns 95o), but without regard to wind direction (overshooters behaved essentially the same except that nearly 100% turned). Many fewer flies entering a plume cross wind turned ( c . 60%), and when they did they made much smaller turns ( 58o); these turns were, however, significantly biassed upwind ( c . 70%). All three classes of fly had similar groundspeeds ( 5.5–6.5 m s_1) and angular velocities ( 350–400o s-1). Clear evidence was obtained of in-flight sensitivity to wind direction: significantly more flies entering odour turned upwind than downwind, and odour losers turning upwind made significantly larger turns than average. The main basis for the different sizes of turn was the different durations of the turning flight, rather than changes in angular velocity or speed. No evidence was found of flies landing after losing contact with odour.  相似文献   
73.
ABSTRACT. In Zimbabwe, studies were made of the responses of Glossina pallidipes Austen and G.morsitans morsitans Westwood to artificial host odour using an incomplete ring of electrocuting nets. In a plume of synthetic host odour tsetse flew generally upwind, with 50–60% flying within 35o of due upwind. More than 80% of tsetse flew at < 50 cm above ground level. Upon losing contact with odour they executed a reverse turn within about 2 m, and upon regaining contact they turned upwind. There were no clear differences in the responses of G.m.morsitans and G.pallidipes. Using electrocuting nets lying horizontally on the ground it was found that tsetse landed in the vicinity of the odour source, the propensity to land being greater for G.pallidipes than for G.m, morsitans , greater for immature than mature flies, and greater for males than females.  相似文献   
74.
A means of contaminating tsetse flies in the field with fluorescent pigment powders has been developed, using pigment in open-ended plastic chambers at the cage position on traps. Glossina pallidipes Austen and G.morsitans morsitans Westwood passed rapidly through the chambers, and on exit were contaminated with consistent doses of powder: about 90 micrograms/fly when powder was presented on the chamber roof and about 28 micrograms/fly when powder was presented on the chamber floor. The technique automatically marks tsetse flies with pigment, cheaply, simply and with the minimum imposition of stress and is expected to be particularly useful in ecological studies. Its potential for marking other biting flies is discussed.  相似文献   
75.
To study the population structure of Glossina morsitans morsitans Westwood (Diptera: Glossinidae), polymerase chain reaction (PCR) and singlestrand conformational polymorphism (SSCP) methods were used to estimate mitochondrial DNA diversity at four loci in six natural populations from Zambia, Zimbabwe and Mozambique, and in two laboratory cultures. The Zambian and Zimbabwean samples were from a single fly belt. Four alleles were recorded at 12S and 16S1, and five alleles at 16S2 and COI. Nucleotide sequencing confirmed their singularities. Chi-square contingency tests showed that allele frequencies differed significantly among populations. Mean allele diversities in populations averaged over loci varied from 0.14 to 0.61. Little loss in haplotype diversity was detected in the laboratory cultures thereby indicating little inbreeding. Wright's fixation index F(ST) in the natural populations was 0.088+/-0.016, the correlation of haplotypes within populations relative to correlations in the total. A function of its inverse allows an estimate of the mean equivalent number of females exchanged per population per generation, 5.2. No correlation was detected between pairwise genetic distance measures and geographical distances. Drift explains the high degree of differentiation.  相似文献   
76.
Abstract. Host blood effects on Trypanosoma congolense establishment in Glossina morsitans morsitans and Glossina morsitans centralis were investigated using goat, rabbit, cow and rhinoceros blood. Meals containing goat erythrocytes facilitated infection in G. m. morsitans , whereas meals containing goat plasma facilitated infection in G. m. centralis. Goat blood effects were not observed in the presence of complementary rabbit blood components. N-acetyl-glucosamine (a midguMectin inhibitor) increased infection rates in some, but not all, blood manipulations. Cholesterol increased infection rates in G. m. centralis only. Both compounds together added to cow blood produced superinfection in G. m. centralis , but not in G. m. morsitans. Midgut protease levels did not differ 6 days post-infection in flies maintaining infections versus flies clearing infections. Protease levels were weakly correlated with patterns of infection, but only in G. m. morsitans. These results suggest that physiological mechanisms responsible for variation in infection rates are only superficially similar in these closely-related tsetse.  相似文献   
77.
78.
Lectin signalling of maturation of T.congolense infections in tsetse   总被引:1,自引:0,他引:1  
The process of maturation of Trypanosoma congolense Broden in tsetse has been shown to be initiated by lectin secreted in the fly midgut. In the present study the duration of lectin signal required to induce maturation was determined by the sequential addition or removal of a specific lectin inhibitor (D+glucosamine) to the diet of infected male Glossina morsitans Westwood. An established midgut infection of T.congolense was found to require, at most, 72 h exposure to midgut lectin to begin the process of maturation. Longer exposure to midgut lectin increased the frequency of maturation, suggesting clonal variation in response to lectin stimulation occurs within trypanosome stocks. It is suggested that this variation corresponds to differences in lectin binding sites on the trypanosome surface. Midgut trypanosomes retained their ability to mature throughout their life in the fly; when lectin activity in the midgut was inhibited, the trypanosomes remained as procyclic forms but when this inhibition was removed maturation was able to proceed. This indicates that the process of maturation is dependent upon a signal from the fly and is not predetermined by the trypanosomes undergoing a fixed number of division cycles. The possible role of lectins in the maturation of trypanosomes in vitro is discussed.  相似文献   
79.
The structure, and assumed parameter values, of a recent dynamic population model for tsetse (Diptera: Glossinidae) render it unable to fit published data on tsetse control programs using odor-baited targets, insecticide-treated cattle and the sterile insect technique (SIT). The underlying problem is a mismatch between the small size of the mapped cells (1 ha) and the long time-step, which allows flies to move only once every 5 days, and then only to an adjacent cell. Assumed rates of tsetse dispersal and killing by odor-baited targets are consequently at least an order of magnitude lower than observed in the field. Suggestions that Glossina pallidipes could be eradicated more rapidly with SIT, than using hundreds of targets per km2, is contradicted both by the field data and by three other independent modeling studies.  相似文献   
80.
The critique by Hargrove et al. (Popul Ecol, 2011) of our recently published paper on a tsetse population model (Barclay and Vreysen in Popul Ecol 53:89–110, 2011) has made some good points but has also misinterpreted the intent of some of our results as we presented them. Hargrove et al. rightly say that there is a mismatch between the size of the unit cells in the model (1 ha) and the iteration rate of the model (every 5 days), yielding too low a dispersal rate to simulate reality. However, they have misconstrued several of our results that we presented as examples to imply that those results were a necessary condition for control of tsetse, especially using traps and targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号