首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   548篇
  免费   3篇
  国内免费   55篇
  606篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   15篇
  2012年   8篇
  2011年   6篇
  2010年   7篇
  2009年   23篇
  2008年   20篇
  2007年   21篇
  2006年   31篇
  2005年   32篇
  2004年   29篇
  2003年   25篇
  2002年   13篇
  2001年   22篇
  2000年   18篇
  1999年   29篇
  1998年   31篇
  1997年   13篇
  1996年   19篇
  1995年   27篇
  1994年   17篇
  1993年   25篇
  1992年   16篇
  1991年   20篇
  1990年   17篇
  1989年   19篇
  1988年   15篇
  1987年   16篇
  1986年   9篇
  1985年   11篇
  1984年   10篇
  1983年   4篇
  1982年   7篇
  1981年   5篇
  1980年   5篇
  1979年   2篇
  1976年   3篇
排序方式: 共有606条查询结果,搜索用时 0 毫秒
31.
Two pot experiments were conducted to examine three-level interactions between host plants, mycorrhizal fungi and parasitic plants. In a greenhouse experiment, Poa annua plants were grown in the presence or absence of an AM fungus (either Glomus lamellosum V43a or G. mosseae BEG29) and in the presence or absence of a root hemiparasitic plant (Odontites vulgaris). In a laboratory experiment, mycorrhizal infection (Glomus claroideum BEG31) of Trifolium pratense host plants (mycorrhizal versus non-mycorrhizal) was combined with hemiparasite infection (Rhinanthus serotinus) of the host (parasitized versus non-parasitized). Infection with the two species of Glomus had no significant effect on the growth of P. annua, while hemiparasite infection caused a significant reduction in host biomass. Mycorrhizal status of P. annua hosts (i.e. presence/absence of AM fungus) affected neither the biomass nor the number of flowers produced by the attached O. vulgaris plants. Infection with G. claroideum BEG31 greatly increased the biomass of T. pratense, but hemiparasite infection had no effect. The hemiparasitic R. serotinus plants attached to mycorrhizal hosts had higher biomass and produced more flowers than plants growing with non-mycorrhizal hosts. Roots of T. pratense were colonized by the AM fungus to an extent independent of the presence or absence of the hemiparasite. Our results confirm earlier findings that the mycorrhizal status of a host plant can affect the performance of an attached root hemiparasite. However, improvement of the performance of the parasitic plant following attachment to a mycorrhizal host depends on the extent to which the AM fungi is able to enhance the growth of the host. Accepted: 23 February 2001  相似文献   
32.
Curculigo orchioides Gaertn. (family Hypoxidaceae) is an endangered anticarcinogenic and aphrodisiac herb, native of India. This study reports the effect of three arbuscular mycorrhizal (AM) fungal inocula on post-transplanting performance of ‘in vitro’ raised C. orchioides plantlets. The three AM fungal inocula consisted of two monospecific cultures of Glomus geosporum and G. microcarpum and one crude consortium of AM fungal spores isolated from rhizosphere soil of C. orchioides growing in natural habitat. Complete plantlets of C. orchioides were raised by direct organogenesis of leaf explants on half strength Murashige and Skoog’s medium devoid of any growth hormone. C. orchioides plantlets responded significantly different to all three mycorrhizal treatments. Mycorrhization enhanced the survival rate of C. orchioides plantlets to 100%. The inoculated plantlets fared significantly better than the uninoculated ones in terms of biomass production and number of leaves and roots per plant. Mycorrhizal plantlets exhibited higher concentrations of photosynthetic pigments as well as minerals P, Mg, Cu, Zn, Mn and Fe in both shoots and roots. Among the three inocula tested, plantlets inoculated with the mixed consortium of AM fungi consistently performed better in terms of the parameters evaluated. The study suggests use of mixed consortium of AM fungi over monospecific cultures for the sustainable cultivation and conservation of endangered medicinal plant: Curculigo orchioides.  相似文献   
33.
Abstract.  1. Arbuscular mycorrhizal fungal (AMF) infection can have negative, positive or neutral effects on insect herbivore populations, but patterns are difficult to predict.
2. Intra-specific genetic variation in nutrient uptake ability between fungal isolates may also have indirect effects on insect herbivores due to changes in plant quality. In preliminary studies mirid ( Tupiocoris notatus ) populations were significantly reduced on tobacco ( Nicotiana rustica ) colonised by AMF but it was unknown if same-species fungal isolates differed in their effect.
3. An experiment was performed as a first test of the effect of intra-specific genetic variation in the mycorrhizal fungus Glomus etunicatum on mirid nymphal population structure, dynamics, and growth rate.
4. Mirid nymphal populations were lower on mycorrhizal fungal-infected plants. Population size, however, did not differ between the mycorrhizal isolates. While no statistical difference in population between isolates was found, one isolate consistently had 1.7–2.4 times lower mirid populations compared with the controls, indicating that the magnitude of effect is different between mycorrhizal isolates.
5. The significantly negative effect of AMF on mirid populations likely resulted from AMF-induced changes in plant quality (e.g. increased defence). This study lends further support to recent demonstrations that below-ground symbionts significantly influence above-ground processes. In addition, mycorrhizal fungi can affect insect population structure, which may have consequences for future herbivory.  相似文献   
34.
The hypothesis of the present study was that bacterial communities would differentiate under Eucalyptus camaldulensis and that an enhancement of arbuscular mycorrhizal (AM) density would minimize this exotic plant species effect. Treatments consisted of control plants, preplanting fertilizer application and AM inoculation. After 4 months of culture in autoclaved soil, E. camaldulensis seedlings were either harvested for growth measurement or transferred into containers filled with the same soil but not sterilized. Other containers were kept without E. camaldulensis seedlings. After 12 months, effects of fertilizer amendment and AM inoculation were measured on the growth of Eucalyptus seedlings and on soil microbial communities. The results clearly show that this plant species significantly modified the soil bacterial community. Both community structure (assessed by denaturing gradient gel electrophoresis profiles) and function (assessed by substrate-induced respiration responses including soil catabolic evenness) were significantly affected. Such changes in the bacterial structure and function were accompanied by disturbances in the composition of the herbaceous plant species layer. These results highlight the role of AM symbiosis in the processes involved in soil bio-functioning and plant coexistence and in afforestation programmes with exotic tree species that target preservation of native plant diversity.  相似文献   
35.
Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi   总被引:1,自引:0,他引:1  
  相似文献   
36.
烟草内生菌根真菌的分离鉴定   总被引:16,自引:0,他引:16  
本文报道了从烟草(Nicotiana tabacum L.)的根际土壤中分离出内生菌根真菌的孢子,用单孢接种烟苗并在温室内水培条件下培养。选出能在烟草上形成菌根的菌株,经过再次单孢接种确认后,进行种的鉴定。从分离的8个菌株中已鉴定出球囊霉属(Glomus)的3个新记录种:漏斗孢球囊霉[G.mosseae(Nic.& Gerd.)GeM.& Trappe]、根内孢球囊霉(G.intraradics Schenck & Smith)和联结球囊霉(G.constrictum Trappe)。  相似文献   
37.
The aim of this work was to disentangle phosphorus status-dependent and -independent effects of arbuscular mycorrhizal fungus (AMF) on leaf morphology and carbon allocation in perennial ryegrass (Lolium perenne). To this end, we assessed the P-response function of morphological components in mycorrhizal and nonmycorrhizal plants of similar size. AMF (Glomus hoi) stimulated relative P-uptake rate, decreased leaf mass per area (LMA), and increased shoot mass ratio at low P supply. Lower LMA was caused by both decreased tissue density and thickness. Variation in tissue density was almost entirely caused by variations in soluble C, while that in thickness involved structural changes. All effects of AMF were indistinguishable from those mediated by increases in relative P-uptake rate through higher P-supply rates. Thus the relationships between relative P-uptake rate, leaf morphology and C allocation were identical in mycorrhizal and nonmycorrhizal plants. No evidence was found for AMF effects not mediated by changes in plant P status.  相似文献   
38.
39.
40.
Kim  K.Y.  Cho  Y.S.  Sohn  B.K.  Park  R.D.  Shim  J.H.  Jung  S.J.  Kim  Y.W.  Seong  K.Y. 《Plant and Soil》2002,238(2):267-272
Growth response of hot pepper (Capsicum annuum L.) inoculated with the arbuscular mycorrhizal (AM) fungus, Glomus intraradices Schenck and Smith was evaluated in a greenhouse study. Three treatments in a soil-based medium amended with rock phosphate were: (1) control (CON), (2) inoculation of G. intraradices as a freshly prepared soil mixture of spores, hyphae and colonized roots of Sorghum vulgare (FM), and (3) inoculation of the fungus as cold-stored mixed inoculum (CM). Colonization at 14 weeks after inoculation with CM was 42.5%, but was significantly lower with FM (14.5%). Inoculation with G. intraradices as FM and CM increased growth of pepper, and total phosphorus and nitrogen uptake in shoots and roots compared with the CON treatment. Inoculation with CM resulted in significant increases in plant dry weight and chlorophyll concentration compared to the FM and CON treatments. Acid phosphatase activity in the rhizosphere was generally increased by AM fungal treatments. Highest acid phosphatase activity occurred at 14 weeks after inoculation with CM. Alkaline phosphatase activity in the CM treatment was significantly higher compared to that in CON and FM treatments throughout the growth period. Thus, cold storage of mixed inoculum enhanced colonization and growth-promoting activity of G. intraradices compared to freshly prepared inoculum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号