首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   545篇
  免费   4篇
  国内免费   55篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   16篇
  2012年   8篇
  2011年   6篇
  2010年   7篇
  2009年   23篇
  2008年   20篇
  2007年   21篇
  2006年   31篇
  2005年   32篇
  2004年   29篇
  2003年   25篇
  2002年   13篇
  2001年   22篇
  2000年   18篇
  1999年   28篇
  1998年   29篇
  1997年   13篇
  1996年   19篇
  1995年   27篇
  1994年   17篇
  1993年   24篇
  1992年   16篇
  1991年   20篇
  1990年   17篇
  1989年   19篇
  1988年   15篇
  1987年   16篇
  1986年   9篇
  1985年   10篇
  1984年   10篇
  1983年   4篇
  1982年   7篇
  1981年   5篇
  1980年   5篇
  1979年   2篇
  1976年   3篇
排序方式: 共有604条查询结果,搜索用时 250 毫秒
41.
Abstract.  1. Arbuscular mycorrhizal fungal (AMF) infection can have negative, positive or neutral effects on insect herbivore populations, but patterns are difficult to predict.
2. Intra-specific genetic variation in nutrient uptake ability between fungal isolates may also have indirect effects on insect herbivores due to changes in plant quality. In preliminary studies mirid ( Tupiocoris notatus ) populations were significantly reduced on tobacco ( Nicotiana rustica ) colonised by AMF but it was unknown if same-species fungal isolates differed in their effect.
3. An experiment was performed as a first test of the effect of intra-specific genetic variation in the mycorrhizal fungus Glomus etunicatum on mirid nymphal population structure, dynamics, and growth rate.
4. Mirid nymphal populations were lower on mycorrhizal fungal-infected plants. Population size, however, did not differ between the mycorrhizal isolates. While no statistical difference in population between isolates was found, one isolate consistently had 1.7–2.4 times lower mirid populations compared with the controls, indicating that the magnitude of effect is different between mycorrhizal isolates.
5. The significantly negative effect of AMF on mirid populations likely resulted from AMF-induced changes in plant quality (e.g. increased defence). This study lends further support to recent demonstrations that below-ground symbionts significantly influence above-ground processes. In addition, mycorrhizal fungi can affect insect population structure, which may have consequences for future herbivory.  相似文献   
42.
The hypothesis of the present study was that bacterial communities would differentiate under Eucalyptus camaldulensis and that an enhancement of arbuscular mycorrhizal (AM) density would minimize this exotic plant species effect. Treatments consisted of control plants, preplanting fertilizer application and AM inoculation. After 4 months of culture in autoclaved soil, E. camaldulensis seedlings were either harvested for growth measurement or transferred into containers filled with the same soil but not sterilized. Other containers were kept without E. camaldulensis seedlings. After 12 months, effects of fertilizer amendment and AM inoculation were measured on the growth of Eucalyptus seedlings and on soil microbial communities. The results clearly show that this plant species significantly modified the soil bacterial community. Both community structure (assessed by denaturing gradient gel electrophoresis profiles) and function (assessed by substrate-induced respiration responses including soil catabolic evenness) were significantly affected. Such changes in the bacterial structure and function were accompanied by disturbances in the composition of the herbaceous plant species layer. These results highlight the role of AM symbiosis in the processes involved in soil bio-functioning and plant coexistence and in afforestation programmes with exotic tree species that target preservation of native plant diversity.  相似文献   
43.
44.
Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi   总被引:1,自引:0,他引:1  
  相似文献   
45.
A pot-culture experiment was carried out to investigate the effect of arbuscular mycorrhizal (AM) fungus (Glomus macrocarpum Tul. and Tul.) on plant growth and Cd2+uptake by Apium graveolens L. in soil with different levels of Cd2+. Mycorrhizal (M) and non-mycorrhizal (NM) plants were grown in soil with 0, 5, 10, 40 and 80 Cd2+ mg kg−1soil. The infectivity of the fungus was not affected by the presence of Cd2+ in the soil. M plants showed better growth and less Cd2+ toxicity symptoms. Cd2+ root : shoot ratio was higher in M plants than in NM plants. These differences were more evident at highest Cd2+ level (80 mg kg−1 soil). Chlorophyll a and chlorophyll b concentrations were significantly higher in AM-inoculated celery leaves. The dilution effect due to increased biomass, immobilization of Cd2+ in root and enhanced P-uptake in M plants may be related to attenuation of Cd2+toxicity in celery.  相似文献   
46.
The experiment simulated a plant succession stage when perennial grasses (e.g. Calamagrostis epigejos) invade communities of annuals with different mycotrophy (e.g. Atriplex sagittata and Tripleurospermum inodorum) on coalmine spoil banks. Communities of these three model species were planted in 30 l microcosms either in the presence of pre-established mycelium network of three arbuscular mycorrhizal fungi (AMF) species (individually and in a mixture) or without AMF. Different AMF species had significantly different effects on individual plant species’ growth, which resulted in changes in plant community structure. While in the no-AMF treatment the non-mycotrophic plant species A. sagittata contributed nearly 70% to the total plant biomass, in the presence of the 3 AMF mixture the contribution of this species was only about 10%. Different effects of AMF on tiller formation by C. epigejos suggest that some AMF could have greater potential to promote the replacement of annuals by perennial grasses than others. It can be concluded that not merely the presence but also the identity of AMF present on spoil banks can affect the coexistence of plant dominants, the community structure and the progress of plant succession.  相似文献   
47.
Microscopic evidence suggests that fungi forming endosymbioses with liverworts in the Marchantiales are arbuscular mycorrhizal (AM) fungi from the Glomeromycota. Polymerase chain reaction amplification of ribosomal sequences confirmed that endophytes of the New Zealand liverwort, Marchantia foliacea, were members of the genus Glomus. Endophytes from two Glomus rDNA phylotypes were repeatedly isolated from geographically separated liverwort samples. Multiple phylotypes were present in the same liverwort patch. The colonizing Glomus species exhibited substantial internal transcribed spacer sequence variation within phylotypes. This work suggests that certain liverwort species may serve as a model for studying DNA sequence variation in colonizing AM phylotypes and specificity in AM-host relationships.  相似文献   
48.
The aim of this work was to disentangle phosphorus status-dependent and -independent effects of arbuscular mycorrhizal fungus (AMF) on leaf morphology and carbon allocation in perennial ryegrass (Lolium perenne). To this end, we assessed the P-response function of morphological components in mycorrhizal and nonmycorrhizal plants of similar size. AMF (Glomus hoi) stimulated relative P-uptake rate, decreased leaf mass per area (LMA), and increased shoot mass ratio at low P supply. Lower LMA was caused by both decreased tissue density and thickness. Variation in tissue density was almost entirely caused by variations in soluble C, while that in thickness involved structural changes. All effects of AMF were indistinguishable from those mediated by increases in relative P-uptake rate through higher P-supply rates. Thus the relationships between relative P-uptake rate, leaf morphology and C allocation were identical in mycorrhizal and nonmycorrhizal plants. No evidence was found for AMF effects not mediated by changes in plant P status.  相似文献   
49.
A nested multiplex PCR (polymerase chain reaction) approach was used for multilocus genotyping of arbuscular mycorrhizal fungal populations. This method allowed us to amplify multiple loci from Glomus single spores in a single PCR amplification. Variable introns in the two protein coding genes GmFOX2 and GmTOR2 were applied as codominant genetic markers together with the LSU rDNA. Genetic structure of Glomus spp. populations from an organically and a conventionally cultured field were compared by hierarchical sampling of spores from four plots in each field. Multilocus genotypes were characterized by SSCP (single stranded conformation polymorphism) and sequencing. All spore genotypes were unique suggesting that no recombination was taking place in the populations. There were no overall differences in the distribution of genotypes in the two fields and identical genotypes could be sampled from both fields. Analysis of gene diversity indicated that Glomus populations are subdivided between plots within each field. There were however, no subdivision between the fields.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号