首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   854篇
  免费   121篇
  国内免费   22篇
  997篇
  2024年   3篇
  2023年   19篇
  2022年   9篇
  2021年   24篇
  2020年   38篇
  2019年   54篇
  2018年   43篇
  2017年   39篇
  2016年   42篇
  2015年   39篇
  2014年   51篇
  2013年   61篇
  2012年   27篇
  2011年   36篇
  2010年   39篇
  2009年   48篇
  2008年   54篇
  2007年   49篇
  2006年   52篇
  2005年   34篇
  2004年   37篇
  2003年   32篇
  2002年   22篇
  2001年   18篇
  2000年   10篇
  1999年   25篇
  1998年   17篇
  1997年   9篇
  1996年   6篇
  1995年   8篇
  1994年   9篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有997条查询结果,搜索用时 0 毫秒
61.
62.
Aim  We examine the effect of island area on body dimensions in a single species of primate endemic to Southeast Asia, the long-tailed macaque ( Macaca fascicularis ). In addition, we test Allen's rule and a within-species or intraspecific equivalent of Bergmann's rule (i.e. Rensch's rule) to evaluate body size and shape evolution in this sample of insular macaques.
Location  The Sunda Shelf islands of Southeast Asia.
Methods  Body size measurements of insular macaques gathered from the literature were analysed relative to island area, latitude, maximum altitude, isolation from the mainland and other islands, and various climatic variables using linear regression.
Results  We found no statistically significant relationship between island area and body length or head length in our sample of insular long-tailed macaques. Tail length correlated negatively with island area. Head length and body length exhibited increases corresponding to increasing latitude, a finding seemingly consistent with the expression of Bergmann's rule within a single species. These variables, however, were not correlated with temperature, indicating that Bergmann's rule is not in effect. Tail length was not correlated with either temperature or increasing latitude, contrary to that predicted by Allen's rule.
Main conclusions  The island rule dictating that body size will covary with island area does not apply to this particular species of primate. Our study is consistent with results presented in the literature by demonstrating that skull and body length in insular long-tailed macaques do not, strictly speaking, conform to Rensch's rule. Unlike previous studies, however, our findings suggest that tail-length variation in insular macaques does not support Allen's rule.  相似文献   
63.
Aim We analysed body‐size variation in relation to latitude, longitude, elevation and environmental variables in Ctenomys (tuco‐tucos), subterranean rodents in the Ctenomyidae (Caviomorpha). We tested the existence of inter‐ and intraspecific size clines to determine if these rodents follow Bergmann's rule, to compare intra‐ and interspecific size trends and to assess the relevance of the subterranean lifestyle on these trends. Location South America, south of 15° latitude. Methods This paper is based on 719 specimens of tuco‐tucos from 133 localities of Argentina, Bolivia, Chile, Paraguay, Peru and Uruguay, representing 47 named species and 32 undescribed forms. Intraspecific analyses were performed for Ctenomys talarum Thomas, 1898 and the Ctenomys perrensi Thomas, 1896 species complex. Head and body length and weight were used for estimating body size. Geographical independent variables included latitude, longitude and altitude. Environmental independent variables were mean minimal and maximal monthly temperature, mean annual temperature, mean minimal and maximal precipitation, and total annual precipitation. To estimate seasonality, the annual variability of the climatic factors was calculated as their coefficients of variation and the difference between maximum and minimum values. Mean annual actual evapotranspiration (AET), and mean annual, January (summer) and July (winter) potential evapotranspiration (PET) values were also calculated for each locality, as well as annual, summer and winter water balance (WB). Statistical analyses consisted of simple and multiple regression and nonparametric correlation. Results Body size of Ctenomys decreases interspecifically from 15°00′ S to 48°15′ S and from 56°33′ W to 71°46′ W, and is positively correlated with ambient temperature and precipitation. The best predictors of body size according to multiple regression analyses were mean annual temperature, the difference between mean maximum and minimum annual temperatures, annual PET, the difference between summer and winter PET, and annual and winter water balance. These patterns are repeated, but not identically, at a smaller geographical scale within the species C. talarum and the superspecies C. perrensi. Main conclusions Tuco‐tucos follow the converse to Bergmann's rule at the interspecific level. At the intraspecific level some parallel trends were observed, but the smaller scale of these analyses, involving a very reduced variation of environmental factors, necessitates caution in interpreting results. The subterranean lifestyle probably insulates these rodents from the external temperature. The observed latitudinal body‐size gradients are more probably related to seasonality, ambient energy, primary productivity and/or intensity of predation.  相似文献   
64.
The relationship between spatial density and size of plants is an important topic in plant ecology. The self‐thinning rule suggests a ?3/2 power between average biomass and density or a ?1/2 power between stand yield and density. However, the self‐thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log‐linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self‐thinning rule to improve light interception.  相似文献   
65.
Although chloroplast protein stability has long been recognised as a major level of post‐translational regulation in photosynthesis and gene expression, the factors determining protein stability in plastids are largely unknown. Here, we have identified stability determinants in vivo by producing plants with transgenic chloroplasts that express a reporter protein whose N‐ and C‐termini were systematically modified. We found that major stability determinants are located in the N‐terminus. Moreover, testing of all 20 amino acids in the position after the initiator methionine revealed strong differences in protein stability and indicated an important role of the penultimate N‐terminal amino acid residue in determining the protein half life. We propose that the stability of plastid proteins is largely determined by three factors: (i) the action of methionine aminopeptidase (the enzyme that removes the initiator methionine and exposes the penultimate N‐terminal amino acid residue), (ii) an N‐end rule‐like protein degradation pathway, and (iii) additional sequence determinants in the N‐terminal region.  相似文献   
66.
Given the well‐documented fact that human body proportions covary with climate (presumably due to the action of selection), one would expect that the Ipiutak and Tigara Inuit samples from Point Hope, Alaska, would be characterized by an extremely cold‐adapted body shape. Comparison of the Point Hope Inuit samples to a large (n > 900) sample of European and European‐derived, African and African‐derived, and Native American skeletons (including Koniag Inuit from Kodiak Island, Alaska) confirms that the Point Hope Inuit evince a cold‐adapted body form, but analyses also reveal some unexpected results. For example, one might suspect that the Point Hope samples would show a more cold‐adapted body form than the Koniag, given their more extreme environment, but this is not the case. Additionally, univariate analyses seldom show the Inuit samples to be more cold‐adapted in body shape than Europeans, and multivariate cluster analyses that include a myriad of body shape variables such as femoral head diameter, bi‐iliac breadth, and limb segment lengths fail to effectively separate the Inuit samples from Europeans. In fact, in terms of body shape, the European and the Inuit samples tend to be cold‐adapted and tend to be separated in multivariate space from the more tropically adapted Africans, especially those groups from south of the Sahara. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
67.
冻融作用对土壤温室气体产生与排放的影响   总被引:7,自引:0,他引:7  
土壤冻融交替是中、高纬度和高海拔地区常见的自然现象,土壤在冻融期间会经历一系列物理、化学和生物变化过程。有研究表明,冻融区土壤是温室气体的重要排放源,冻融期土壤温室气体的排放量在全年总排放量中占有重要的份额,尤其是N2O。随着全球气候变暖,部分地区的土壤环境将经受更广泛和频繁的冻融交替作用,这会导致土壤温室气体排放量增加,从而又进一步促进了气候变暖。本文重点概述了冻融作用对土壤温室气体产生与排放的影响及其主要影响机制,并简要提出了目前土壤冻融研究中的一些不足以及今后值得关注和深入研究的科学问题。  相似文献   
68.
The chain-breaking antioxidant activities of eight coumarins [7-hydroxy-4-methylcoumarin (1), 5,7-dihydroxy-4-methylcoumarin (2), 6,7-dihydroxy-4-methylcoumarin (3), 6,7-dihydroxycoumarin (4), 7,8-dihydroxy-4-methylcoumarin (5), ethyl 2-(7,8-dihydroxy-4-methylcoumar-3-yl)-acetate (6), 7,8-diacetoxy-4-methylcoumarin (7) and ethyl 2-(7,8-diacetoxy-4-methylcoumar-3-yl)-acetate (8)] during bulk lipid autoxidation at 37 °C and 80 °C in concentrations of 0.01–1.0 mM and their radical scavenging activities at 25 °C using TLC–DPPH test have been studied and compared. It has been found that the o-dihydroxycoumarins 36 demonstrated excellent activity as antioxidants and radical scavengers, much better than the m-dihydroxy analogue 2 and the monohydroxycoumarin 1. The substitution at the C-3 position did not have any effect either on the chain-breaking antioxidant activity or on the radical scavenging activity of the 7,8-dihydroxy- and 7,8-diacetoxy-4-methylcoumarins 6 and 8. The comparison with DL-α-tocopherol (TOH), caffeic acid (CA) and p-coumaric acid (p-CumA) showed that antioxidant efficiency decreases in the following sequence:  相似文献   
69.
Identifying the contribution of pre‐ and postzygotic barriers to gene flow is a key goal of speciation research. The widespread dung fly species Sepsis cynipsea and Sepsis neocynipsea offer great potential for studying the speciation process over a range of opportunities for gene exchange within and across sister species (cross‐continental allopatry, continental parapatry and sympatry). We examined the role of postcopulatory isolating barriers by comparing female fecundity and egg‐to‐adult viability of F1 and F2 hybrids, as well as backcrosses of F1 hybrids with the parental species, via replicated crosses of sym‐, para‐ and allopatric populations. Egg‐to‐adult viability was strongly but not totally suppressed in hybrids, and offspring production approached nil in the F2 generation (hybrid breakdown), indicating yet unspecified intrinsic incompatibilities. Viable F1 hybrid offspring showed almost absolute male (the heterogametic sex) sterility while females remained largely fertile, in accordance with Haldane's rule. Hybridization between the two species in European areas of sympatry (Swiss Alps) indicated only minor reinforcement based on fecundity traits. Crossing geographically isolated European and North American S. neocynipsea showed similar albeit weaker isolating barriers that are most easily explained by random genetic drift. We conclude that in this system with a biogeographic continuum of reproductive barriers, speciation is mediated primarily by genetic drift following dispersal of flies over a wide (allopatric) geographic range, with some role of natural or sexual selection in incidental or direct reinforcement of incompatibility mechanisms in areas of European sympatry. S(ubs)pecies status of continental S. neocynipsea appears warranted.  相似文献   
70.
The N‐degron pathway determines the half‐life of proteins in both prokaryotes and eukaryotes by precisely recognizing the N‐terminal residue (N‐degron) of substrates. ClpS proteins from bacteria bind to substrates containing hydrophobic N‐degrons (Leu, Phe, Tyr, and Trp) and deliver them to the caseinolytic protease system ClpAP. This mechanism is preserved in organelles such as mitochondria and chloroplasts. Bacterial ClpS adaptors bind preferentially to Leu and Phe N‐degrons; however, ClpS1 from Arabidopsis thaliana (AtClpS1) shows a difference in that it binds strongly to Phe and Trp N‐degrons and only weakly to Leu. This difference in behavior cannot be explained without structural information due to the high sequence homology between bacterial and plant ClpS proteins. Here, we report the structure of AtClpS1 at 2.0 Å resolution in the presence of a bound N‐degron. The key determinants for α‐amino group recognition are conserved among all ClpS proteins, but the α3‐helix of eukaryotic AtClpS1 is significantly shortened, and consequently, a loop forming a pocket for the N‐degron is moved slightly outward to enlarge the pocket. In addition, amino acid replacement from Val to Ala causes a reduction in hydrophobic interactions with Leu N‐degron. A combination of the fine‐tuned hydrophobic residues in the pocket and the basic gatekeeper at the entrance of the pocket controls the N‐degron selectivity of the plant ClpS protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号