首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1260篇
  免费   81篇
  国内免费   51篇
  1392篇
  2024年   2篇
  2023年   18篇
  2022年   29篇
  2021年   22篇
  2020年   28篇
  2019年   25篇
  2018年   24篇
  2017年   51篇
  2016年   40篇
  2015年   46篇
  2014年   42篇
  2013年   74篇
  2012年   40篇
  2011年   72篇
  2010年   66篇
  2009年   99篇
  2008年   119篇
  2007年   82篇
  2006年   70篇
  2005年   64篇
  2004年   43篇
  2003年   35篇
  2002年   33篇
  2001年   29篇
  2000年   33篇
  1999年   29篇
  1998年   19篇
  1997年   20篇
  1996年   23篇
  1995年   21篇
  1994年   21篇
  1993年   13篇
  1992年   5篇
  1991年   9篇
  1990年   9篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1982年   4篇
  1981年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1392条查询结果,搜索用时 8 毫秒
51.
52.
Contemporary clinical ethics was founded on principlism, and the four principles: respect for autonomy, nonmaleficence, beneficence and justice, remain dominant in medical ethics discourse and practice. These principles are held to be expansive enough to provide the basis for the ethical practice of medicine across cultures. Although principlism remains subject to critique and revision, the four‐principle model continues to be taught and applied across the world. As the practice of medicine globalizes, it remains critical to examine the extent to which both the four‐principle framework, and individual principles among the four, suffice patients and practitioners in different social and cultural contexts. Using the four‐principle model we analyze two accounts of surrogate decision making – one from the developed and one from the developing world – in which the clinician undertakes medical decision‐making with apparently little input from the patient and/or family. The purpose of this analysis is to highlight challenges in assessing ethical behaviour according to the principlist model. We next describe cultural expectations and mores that inform both patient and clinician behaviors in these scenarios in order to argue that the principle of respect for persons informed by culture‐specific ideas of personhood may offer an improved ethical construct for analyzing and guiding medical practice in a globalized and plural world.  相似文献   
53.
Zhao HG  Sun XC  Xian XH  Li WB  Zhang M  Li QJ 《Neurochemical research》2007,32(11):1919-1926
Brief limb ischemia was reported to protect neurons against injury induced by subsequent cerebral ischemia-reperfusion, and this phenomenon is known as limb ischemic preconditioning (LIP). To explore the role of nitric oxide (NO) in neuroprotection of LIP in rats, we observed changes in the content of nitric oxide (NO) and activity of NO synthase (NOS) in the serum and CA1 hippocampus of rats after transient limb ischemic preconditioning (LIP), and the influence of NG-nitro-l-arginine methylester (l-NAME), a NOS inhibitor, on the neuroprotection of LIP against cerebral ischemia-reperfusion injury. Results showed that NO content and NOS activity in serum increased significantly after LIP compared with the sham group. The increase showed a double peak pattern, in which the first one appeared at time 0 (immediate time point) and the second one appeared at 48 h after the LIP (P < 0.01). The NO content and NOS activity in the CA1 hippocampus in LIP group showed similar change pattern with the changes in the serum, except for the first peak of up-regulation of NO content and NOS activity appeared at 6 h after LIP. Pretreatment with l-NAME before LIP blocked the neuroprotection of LIP against subsequent cerebral ischemic insult. The blocking effect of l-NAME was abolished with pretreatment of l-Arg. These findings indicated that NO may be associated with the tolerance of pyramidal cells in the CA1 hippocampus to ischemia induced by LIP in rats.  相似文献   
54.
55.
Aim To assess the effect of local adaptation and phenotypic plasticity on the potential distribution of species under future climate changes. Trees may be adapted to specific climatic conditions; however, species range predictions have classically been assessed by species distribution models (SDMs) that do not account for intra‐specific genetic variability and phenotypic plasticity, because SDMs rely on the assumption that species respond homogeneously to climate change across their range, i.e. a species is equally adapted throughout its range, and all species are equally plastic. These assumptions could cause SDMs to exaggerate or underestimate species at risk under future climate change. Location The Iberian Peninsula. Methods Species distributions are predicted by integrating experimental data and modelling techniques. We incorporate plasticity and local adaptation into a SDM by calibrating models of tree survivorship with adaptive traits in provenance trials. Phenotypic plasticity was incorporated by calibrating our model with a climatic index that provides a measure of the differences between sites and provenances. Results We present a new modelling approach that is easy to implement and makes use of existing tree provenance trials to predict species distribution models under global warming. Our results indicate that the incorporation of intra‐population genetic diversity and phenotypic plasticity in SDMs significantly altered their outcome. In comparing species range predictions, the decrease in area occupancy under global warming conditions is smaller when considering our survival–adaptation model than that predicted by a ‘classical SDM’ calibrated with presence–absence data. These differences in survivorship are due to both local adaptation and plasticity. Differences due to the use of experimental data in the model calibration are also expressed in our results: we incorporate a null model that uses survival data from all provenances together. This model always predicts less reduction in area occupancy for both species than the SDM calibrated with presence–absence. Main conclusions We reaffirm the importance of considering adaptive traits when predicting species distributions and avoiding the use of occurrence data as a predictive variable. In light of these recommendations, we advise that existing predictions of future species distributions and their component populations must be reconsidered.  相似文献   
56.
Rogers  H. H.  Dahlman  R. C. 《Plant Ecology》1993,104(1):117-131
Carbon dioxide is rising in the global atmosphere, and this increase can be expected to continue into the foreseeable future. This compound is an essential input to plant life. Crop function is affected across all scales from biochemical to agro-ecosystem. An array of methods (leaf cuvettes, field chambers, free-air release systems) are available for experimental studies of CO2 effects. Carbon dioxide enrichment of the air in which crops grow usually stimulates their growth and yield. Plant structure and physiology are markedly altered. Interactions between CO2 and environmental factors that influence plants are known to occur. Implications for crop growth and yield are enormous. Strategies designed to assure future global food security must include a consideration of crop responses to elevated atmospheric CO2. Future research should include these targets: search for new insights, development of new techniques, construction of better simulation models, investigation of belowground processes, study of interactions, and the elimination of major discrepancies in the scientific knowledge base.  相似文献   
57.
Synthetic biology (SynBio) is a global endeavour with research and development programs in many countries, and due (in part) to its multi-use characteristics it has potential to improve global health in the area of vaccine development, diagnostics, drug synthesis, and the detection and remediation of environmental toxins. However, SynBio will also concurrently require global governance. Here we present what we have learnt from the articles in this Special Issue, and the workshop we hosted in The Hague in February of 2012 on SynBio, global health, and global governance that generated many of the papers appearing here. Importantly we take the notion of ‘responsible research and innovation’ as a guiding perspective. In doing so our understanding of governance is one that shifts its focus from preventing risks and other potential negative implications, and instead is concerned with institutions and practices involved in the inclusive steering of science and technology towards socially desirable outcomes. We first provide a brief overview of the notion of global health, and SynBio’s relation to global health issues. The core of the paper explores some of the dynamics involved in fostering SynBio’s global health pursuits; paying particular attention to of intellectual property, incentives, and commercialization regimes. We then examines how DIYbio, Interactive Learning and Action, and road-mapping activities can be seen as positive and productive forms of governance that can lead to more inclusive SynBio global health research programs.  相似文献   
58.
Bioenergy makes up a significant portion of the global primary energy pie, and its production from modernized technology is foreseen to substantially increase. The climate neutrality of biogenic CO2 emissions from bioenergy grown from sustainably managed biomass resource pools has recently been questioned. The temporary change caused in atmospheric CO2 concentration from biogenic carbon fluxes was found to be largely dependent on the length of biomass rotation period. In this work, we also show the importance of accounting for the unutilized biomass that is left to decompose in the resource pool and how the characterization factor for the climate impact of biogenic CO2 emissions changes whether residues are removed for bioenergy or not. With the case of Norwegian Spruce biomass grown in Norway, we found that significantly more biogenic CO2 emissions should be accounted towards contributing to global warming potential when residues are left in the forest. For a 100‐year time horizon, the global warming potential bio factors suggest that between 44 and 62% of carbon‐flux, neutral biogenic CO2 emissions at the energy conversion plant should be attributed to causing equivalent climate change potential as fossil‐based CO2 emissions. For a given forest residue extraction scenario, the same factor should be applied to the combustion of any combination of stem and forest residues. Life cycle analysis practitioners should take these impacts into account and similar region/species specific factors should be developed.  相似文献   
59.
We investigated the ability of N6-cyclohexyladenosine (CHA), a potent and selective agonist of the adenosine A1 receptor, to attenuate elevations of levels of extracellular hippocampal glutamate and glycine that result from episodes of transient global cerebral ischemia (TGCI). A total of 30 New Zealand white rabbits were randomly assigned to receive 0 (n = 5), 0.1 (n = 8), 1.0 (n = 6), 10 (n = 6), or 100 (n = 5) microM CHA. The drug was dissolved in artificial CSF (vehicle) and administered via a microdialysis probe placed stereotactically into the dorsal hippocampus. A second microdialysis probe placed into the contralateral hippocampus of each animal was perfused with vehicle alone. Ten minutes of TGCI was induced by neck tourniquet inflation and deliberate hypotension from 0 to 10 min. Microdialysis samples were collected as follows: every 20 min preischemia (at -80, -60, -40, -20, and 0 min); every 5 min during ischemia and in the immediate reperfusion period (at 5, 10, 15, and 20 min); and every 20 min for the remainder of the reperfusion period (at 40, 60, and 80 min). Samples were then analyzed for their concentration of glutamate and glycine by HPLC. Following 10 min of ischemia, glutamate levels increased to a peak of 3.28 +/- 0.55 times baseline and returned to preischemic levels by 40 min, i.e., during reperfusion. Glycine concentrations increased to 5.41 +/- 0.91 times over baseline and remained elevated for the duration of the study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
60.
The effect of increasing atmospheric CO2 concentrations on tissue water relations was examined in Betula populifolia, a common pioneer tree species of the northeastern U.S. deciduous forests. Components of tissue water relations were estimated from pressure volume curves of tree seedlings grown in either ambient (350 l l–1) or elevated CO2 (700 l l–1), and both mesic and xeric water regimes. Both CO2 and water treatment had significant effects on osmotic potential at full hydration, apoplasmic fractions, and tissue elastic moduli. Under xeric conditions and ambient CO2 concentrations, plants showed a decrease in osmotic potentials of 0.15 MPa and an increase in tissue elastic moduli at full hydration of 1.5 MPa. The decrease in elasticity may enable plants to improve the soil-plant water potential gradient given a small change in water content, while lower osmotic potentials shift the zero turgor loss point to lower water potentials. Under elevated CO2, plants in xeric conditions had osmotic potentials 0.2 MPa lower than mesic plants and decreased elastic moduli at full hydration. The increase in tissue elasticity at elevated CO2 enabled the xeric plants to maintain positive turgor pressures at lower water potentials and tissue water contents. Surprisingly, the elevated CO2 plants under mesic conditions had the most inelastic tissues. We propose that this inelasticity may enable plants to generate a favorable water potential gradient from the soil to the plant despite the low stomatal conductances observed under elevated CO2 conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号