首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4330篇
  免费   688篇
  国内免费   217篇
  2024年   20篇
  2023年   45篇
  2022年   85篇
  2021年   83篇
  2020年   196篇
  2019年   231篇
  2018年   248篇
  2017年   190篇
  2016年   206篇
  2015年   196篇
  2014年   207篇
  2013年   304篇
  2012年   134篇
  2011年   167篇
  2010年   123篇
  2009年   153篇
  2008年   187篇
  2007年   173篇
  2006年   166篇
  2005年   184篇
  2004年   163篇
  2003年   150篇
  2002年   160篇
  2001年   95篇
  2000年   91篇
  1999年   113篇
  1998年   102篇
  1997年   88篇
  1996年   62篇
  1995年   78篇
  1994年   59篇
  1993年   66篇
  1992年   79篇
  1991年   68篇
  1990年   66篇
  1989年   56篇
  1988年   64篇
  1987年   56篇
  1986年   31篇
  1985年   59篇
  1984年   58篇
  1983年   33篇
  1982年   34篇
  1981年   33篇
  1980年   22篇
  1979年   15篇
  1978年   14篇
  1977年   6篇
  1976年   6篇
  1974年   6篇
排序方式: 共有5235条查询结果,搜索用时 15 毫秒
71.
Summary This paper describes the microscopic evidence supporting a cesium-induced delay in the fusion of chick embryo myoblast membranes during in vitro myogenic differentiation. We have recently demonstrated that the sharp decrease in the conductivity and permittivity of the membranes of these myogenic cells at the time of fusion is delayed 30 h by the addition of cesium to the culture medium (Santini et al., Biochim. Biophys. Acta 945:56–64; 1988). We report here that this delay in fusion is substantiated by direct microscopic observation and that cesium also induces ultrastructural changes in the myoblast cells themselves. Possible mechanisms by which cesium may cause both the delay in fusion as well as the ultrastructural changes observed are discussed. This investigation was partially supported by an Italian Consiglio Nazionale delle Ricerche grant 85.00.304.02 (to P. L. I.).  相似文献   
72.
Abstract: The total Ca2+-dependent release of glutamate induced by depolarization of cerebrocortical nerve terminals with KCl was analyzed into a fast and a slow component. The fast component exhibited a decay time of <1 s and accounted for 0.95 ± 0.10 nmol of glutamate, whereas the slow component, which exhibited a decay time of 52 ± 7 s, accounted for the release of 2.48 ± 0.19 nmol of glutamate. These two components were differentially affected by the Ca2+ chelator BAPTA, the divalent cation Sr2+, or the botulinum neurotoxin A. The adenosine A1 receptor agonist N 6-cyclohexyladenosine strongly reduced the fast component without altering the slow component. In contrast, the inhibitory effect of arachidonic acid and the facilitatory action of the metabotropic glutamate receptor agonist (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylic acid were observed as a decrease and an increase, respectively, in the two components. It is concluded, first, that the fast and slow components correspond to the release of docked and mobilized vesicles, respectively, and second, that presynaptic modulation more significantly alters the fast component of release.  相似文献   
73.
74.
High-conductance calcium-activated potassium (maxi-K) channels comprise a specialized family of K+ channels. They are unique in their dual requirement for depolarization and Ca2+ binding for transition to the open, or conducting, state. Ion conduction through maxi-K channels is blocked by a family of venom-derived peptides, such as charybdotoxin and iberiotoxin. These peptides have been used to study function and structure of maxi-K channels, to identify novel channel modulators, and to follow the purification of functional maxi-K channels from smooth muscle. The channel consists of two dissimilar subunits, and . The subunit is a member of theslo Ca2+-activated K+ channel gene family and forms the ion conduction pore. The subunit is a structurally unique, membrane-spanning protein that contributes to channel gating and pharmacology. Potent, selective maxi-K channel effectors (both agonists and blockers) of low molecular weight have been identified from natural product sources. These agents, together with peptidyl inhibitors and site-directed antibodies raised against and subunit sequences, can be used to anatomically map maxi-K channel expression, and to study the physiologic role of maxi-K channels in various tissues. One goal of such investigations is to determine whether maxi-K channels represent novel therapeutic targets.  相似文献   
75.
To clarify the mechanism of aluminum (Al) toxicity and Al tolerance, we isolated a new clone (pAL201) from a tobacco cDNA library. Northern blot hybridization analysis indicated that the expression of pAL201 is induced by Al treatment and phosphate (P1) starvation. The complete cDNA sequence suggested that this clone encodes a moderately anionic peroxidase (EC 1.11.1.7). Analysis by isoelectric focussing indicated that a moderately anionic peroxidase (approximately pI 6.7) and two cationic peroxidases (pI 9.2 and 9.7) in the soluble fraction are activated by Al treatment and P1 starvation, while two moderately anionic isozymes are repressed by these stresses. We suppose that Al ion stress can control the activity of some peroxidase isozymes, one of which is probably induced by enhanced gene expression of pAL201. There is a possibility that some of these isozymes have some functions in Al ion stress.  相似文献   
76.
Electrochemical data obtained with TMPD+-sensitive electrodes indicate that ammonium-uncoupled chloroplasts retain TMPD (N,N,N',N'-tetramethyl- p -phenylenediamine) mainly in the reduced form during illumination, whereas uncoupled DCMU-treated chloroplasts accumulate TMPD in the oxidized form (TMPD+). This observation indicates that the reduced plastoquinol is the preferred electron donor for photosystem I (PSI) and TMPD can only compete efficiently when plastoquinone reduction is blocked. After adding DCMU the formation of a transmembrane gradient for TMPD+ is reflected by a slow-down of the electrogenic electron transport and by the emerging of the overshoot of the membrane current in the light-off response. A light-dependent increase in photoelectric current generated by chloroplasts in the presence of NH4Cl and TMPD is observed and considered to be caused by a reversible release of current limitation in the interfacial conductance barriers in the lumen.  相似文献   
77.
Movements of ions are considered to be governed by the electroneutrality rule. Therefore, a cation moving across the cell membrane into the cell either passively or actively should move together with its counterion, an anion, in equal amounts of charge or in exchange for another cation inside the cell. This means that the net influx of the cation in question should be affected by the permeability of its counterion and/or another cation inside the cell. To examine osmotic and ionic regulation in Chara cells, cell fragments of Chara having a lower osmotic pressure than normal (L-cell fragments) were prepared. The L-cell fragments were individually put into various dilute electrolyte solutions and their osmotic potentials were measured with a turgor balance. Concentrations of K+, Na+, Ca2+, Mg2+, Cl?, NO?3. and SO2?4. in the external electrolyte solutions in which L-cells had been incubated were also analysed by ion chromatography. The results showed that in 0.5 mM KCL + 0.1 mM CaCl2 solution, Chara L-cell fragments absorbed K+ and Cl? to maintain electroneutrality and then regained their osmotic potential very rapidly. When the anion was Cl, the cation absorbed at the highest rate was K+ On the other hand, when the cation was K, the anion absorbed at the highest rate was Cl, Other ions Ca2+, SO2?4 and NO?3 showed much less permeability than K+ and Cl ?for the Chara plasma membrane. The conclusion from these findings was that due to the constraint of electroneutral transport, the uptake rate of a salt into L-cells is limited by the permeability of the least permeable ion.  相似文献   
78.
The effect of NH 4 + on the regulation of NO 3 and NO 2 transport systems in roots of intact barley (Hordeum vulgareL.) seedlings grown in NO 3 or NO 2 was studied. Ammonium partially inhibited induction of both transport systems. The inhibition was less severe in NO 2 -fed than in NO 3 -fed seedlings, presumably due to lower uptake of NH 4 + in the presence of NO 2 . In seedlings pretreated with NH 4 + subsequent induction was inhibited only when NH 4 + was also present during induction, even though pretreated roots accumulated high levels of NH 4 + . This indicates that inhibition may be regulated by NH 4 + concentration in the cytoplasm rather than its total accumulation in roots. L-Methionine sulfoximine did not relieve the inhibition by NH 4 + , suggesting that inhibition is caused by NH 4 + itself rather than by its assimilation product(s). Ammonium inhibited subsequent expression of NO 3 transport activity similarly in roots grown in 0.1, 1.0, or 10 mM NO 3 for 24 h (steady-state phase) or 4 d (decline phase), indicating that it has a direct, rather than general feedback effect. Induction of the NO 3 transport system was about twice as sensitive to NH 4 + as compared to the NO 2 transport system. This may relate to higher turnover rates of membraneassociated NO 3 -transport proteins.Abbreviations Mes 2(N-morpholino)ethanesulfonic acid - MSO L-methionine sulfoximine  相似文献   
79.
Collections of lily genotypes are usually maintained by yearly planting, harvesting and storage of the bulbs. To facilitate this maintenance, a storage method has been developed for a collection of lily genotypes, including Asiatic hybrids, Oriental hybrids, Lilium longiflorum and L. henryi. Scale bulblets were stored either dry, sealed air-tight in polyethylene bags, or in moist vermiculite in open polyethylene bags for a period of 2 yr. The decrease in mass, sprouting proportion and ion leakage or sprouting proportion alone were determined for treatments carried out at -2°C, °C and 17°C. Sealing scale bulblets in polyethylene bags at -2°C resulted in the smallest decrease in mass, the least ion leakage and the highest sprouting proportion after 2 yr of storage.  相似文献   
80.
Plants of two wheat (Triticum aestivum L.) cultivars differing in salt tolerance were grown in sand with nutrient solutions. 35-d-old plants were subjected to 5 levels of salinity created by adding NaCl, CaCl2 and Na2SO4. Growth reduction caused by salinity was accompanied by increased Na+ and Cl- concentrations, Na+/K+ ratio, and decreased concentration of K+. The salt tolerant cv. Kharchia 65 showed better ionic regulation. Salinity up to 15.7 dS m-1 induced increased uptake of Na+ and Cl- but higher levels of salinity were not accompanied by further increase in uptake of these ions. Observed increases in Na+ and Cl- concentrations at higher salinities seemed to be the consequence of reduction in growth. Uptake of K+ was decreased; more in salt sensitive cultivar. This was also accompanied by differences in its distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号