首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23310篇
  免费   2187篇
  国内免费   1674篇
  27171篇
  2024年   83篇
  2023年   528篇
  2022年   561篇
  2021年   770篇
  2020年   858篇
  2019年   1179篇
  2018年   1049篇
  2017年   979篇
  2016年   1015篇
  2015年   956篇
  2014年   1117篇
  2013年   2250篇
  2012年   868篇
  2011年   1030篇
  2010年   903篇
  2009年   1130篇
  2008年   1252篇
  2007年   1158篇
  2006年   1147篇
  2005年   960篇
  2004年   964篇
  2003年   850篇
  2002年   762篇
  2001年   555篇
  2000年   563篇
  1999年   465篇
  1998年   445篇
  1997年   390篇
  1996年   343篇
  1995年   301篇
  1994年   242篇
  1993年   189篇
  1992年   205篇
  1991年   153篇
  1990年   118篇
  1989年   98篇
  1988年   77篇
  1987年   81篇
  1986年   62篇
  1985年   78篇
  1984年   90篇
  1983年   52篇
  1982年   74篇
  1981年   65篇
  1980年   40篇
  1979年   23篇
  1978年   29篇
  1977年   22篇
  1976年   10篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
M J Sippl  S Weitckus 《Proteins》1992,13(3):258-271
We present an approach which can be used to identify native-like folds in a data base of protein conformations in the absence of any sequence homology to proteins in the data base. The method is based on a knowledge-based force field derived from a set of known protein conformations. A given sequence is mounted on all conformations in the data base and the associated energies are calculated. Using several conformations and sequences from the globin family we show that the native conformation is identified correctly. In fact the resolution of the force field is high enough to discriminate between a native fold and several closely related conformations. We then apply the procedure to several globins of known sequence but unknown three dimensional structure. The homology of these sequences to globins of known structures in the data base ranges from 49 to 17%. With one exception we find that for all globin sequences one of the known globin folds is identified as the most favorable conformation. These results are obtained using a force field derived from a data base devoid of globins of known structure. We briefly discuss useful applications in protein structural research and future development of our approach.  相似文献   
92.
The three-dimensional structure of the quinoprotein methylamine dehydrogenase from Paracoccus dentrificans (PD-MADH) has been determined at 2.8 A resolution by the molecular replacement method combined with map averaging procedures, using data collected from an area detector. The structure of methylamine dehydrogenase from Thio-bacillus versutus, which contains an "X-ray" sequence, was used as the starting search model. MADH consists of 2 heavy (H) and 2 light (L) subunits related by a molecular 2-fold axis. The H subunit is folded into seven four-stranded beta segments, forming a disk-shaped structure, arranged with pseudo-7-fold symmetry. A 31-residue elongated tail exists at the N-terminus of the H subunit in MADH from T. versutus but is partially digested in this crystal form of MADH from P. denitrificans, leaving the H subunit about 18 residues shorter. Each L subunit contains 127 residues arranged into 10 beta-strands connected by turns. The active site of the enzyme is located in the L subunit and is accessible via a hydrophobic channel between the H and L subunits. The redox cofactor of MADH, tryptophan tryptophylquinone is highly unusual. It is formed from two covalently linked tryptophan side chains at positions 57 and 107 of the L subunit, one of which contains an orthoquinone.  相似文献   
93.
Neurons require a large amount of intracellular transport. Cytoplasmic polypeptides and membrane-bounded organelles move from the perikaryon, down the length of the axon, and to the synaptic terminals. This movement occurs at distinct rates and is termed axonal transport. Axonal transport is divided into the slow transport of cytoplasmic proteins including glycolytic enzymes and cytoskeletal structures and the fast transport of membrane-bounded organelles along linear arrays of microtubules. The polypeptide compositions of the rate classes of axonal transport have been well characterized, but the underlying molecular mechanisms of this movement are less clear. Progress has been particularly slow toward understanding force-generation in slow transport, but recent developments have provided insight into the molecular motors involved in fast axonal transport. Recent advances in the cellular and molecular biology of one fast axonal transport motor, kinesin, have provided a clearer understanding of organelle movement along microtubules. The availability of cellular and molecular probes for kinesin and other putative axonal transport motors have led to a reevaluation of our understanding of intracellular motility.  相似文献   
94.
The gap theory in forest dynamics   总被引:4,自引:0,他引:4  
Since the late 1970s, ecologists interested in forest dynamics have focused their attention to the responses of individuals, populations and communities to “gaps” which are openings created in the forest canopy. This review intended to introduce some collective knowledge on major subjects of the gap theory in forest dynamics, in relation to gap-disturbance regimes, tree regeneration behaviour and community structure.  相似文献   
95.
Commonly used minirhizotrons consisting of a transparent tube inserted into the soil seldom attain good contact between the tube and the soil, which leads to root growth occurring in a gap rather than in the soil. A new system is described involving an inflatable flexible rubber wall, made from a modified motorcycle tube. Pressure ensures a proper tube/soil contact so that the environmental circumstances for root growth along the tube more closely correspond to those in the undisturbed soil. Before the endoscope slide is introduced into the minirhizotron for taking pictures, the inflatable tube is removed, so that there is no-often opaque-wall between the endoscope and the roots. This improves the picture quality and facilitates the analysis of root images.  相似文献   
96.
Model equations for the kinetics of the synthesis and decay of molecular aggregates are used to show the high sensitivity of equilibrium concentrations of high-molecular aggregates to external radiation. This phenomenon is used to explain the effects of low-intensity microwave fields on the functioning of biological systems. The experimental results on the influence of SHF-radiation on ferricyanide reduction by erythrocytes are interpreted in detail.  相似文献   
97.
98.
Summary We describe a simple method for determining the overall fold of a polypeptide chain from NOE-derived distance restraints. The method uses a reduced representation consisting of two particles per residue, and a force field containing pseudo-bond and pseudo-angle terms, an electrostatic term, but no van der Waals or hard shell repulsive terms. The method is fast and robust, requiring relatively few distance restraints to approximate the correct fold, and the correct mirror image is readily determined. The method is easily implemented using commercially available molecular modeling software.  相似文献   
99.
Microbial growth on carbon monoxide   总被引:14,自引:0,他引:14  
The utilization of carbon monoxide as energy and/or carbon source by different physiological groups of bacteria is described and compared. Utilitarian CO oxidation which is coupled to the generation of energy for growth is achieved by aerobic and anaerobic eu- and archaebacteria. They belong to the physiological groups of aerobic carboxidotrophic, facultatively anaerobic phototrophic, and anaerobic acetogenic, methanogenic or sulfate-reducing bacteria. The key enzyme in CO oxidation is CO dehydrogenase which is a molybdo iron-sulfur flavoprotein in aerobic CO-oxidizing bacteria and a nickel-containing iron-sulfur protein in anaerobic ones. In carboxidotrophic and phototrophic bacteria, the CO-born CO2 is fixed by ribulose bisphosphate carboxylase in the reductive pentose phosphate cycle. In acetogenic, methanogenic, and probably in sulfate-reducing bacteria, CODH/acetyl-CoA synthase directly incorporates CO into acetyl-CoA.In plasmid-harbouring carboxidotrophic bacteria, CO dehydrogenase as well as enzymes involved in CO2 fixation or hydrogen utilization are plasmid-encoded. Structural genes encoding CO dehydrogenase were cloned from carboxidotrophic, acetogenic and methanogenic bacteria. Although they are clustered in each case, they are genetically distinct.Soil is a most important biological sink for CO in nature. While the physiological microbial groups capable of CO oxidation are well known, the type and nature of the microorganisms actually representing this sink are still enigmatic. We also tried to summarize the little information available on the nutritional and physicochemical requirements determining the sink strength. Because CO is highly toxic to respiring organisms even in low concentrations, the function of microbial activities in the global CO cycle is critical.  相似文献   
100.
Diversities in fungi are manifold. Fungi themselves are heterogeneous and constitute at least three unrelated major taxa. Structural diversity reflects, in most cases, adaptive and functional strategies. Diversity in nucleic acids and chemical compounds is very high in several fungal taxa. Fungi play an essential role in the function of ecosystems. The diversity of plant parasites is extremely high and species-dependent associations exist. Saprobic fungi are most important in wood and litter decay and diverse taxa comprise the main decomposers in specific successional niches. Two dominating symbiotic systems have evolved convergently in various fungal groups, notably lichens and mycorrhizas, both remarkably diverse in their heterotrophic partners.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号