首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   759篇
  免费   29篇
  国内免费   10篇
  798篇
  2023年   14篇
  2022年   31篇
  2021年   24篇
  2020年   5篇
  2019年   32篇
  2018年   27篇
  2017年   9篇
  2016年   8篇
  2015年   9篇
  2014年   85篇
  2013年   65篇
  2012年   49篇
  2011年   40篇
  2010年   49篇
  2009年   31篇
  2008年   56篇
  2007年   117篇
  2006年   58篇
  2005年   21篇
  2004年   3篇
  2003年   13篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有798条查询结果,搜索用时 0 毫秒
211.
212.
In vivo DNA repair occurring in early spermatid stages of the mouse has been studied with four mutagens that are chemical homologs: MMS, EMS, PMS and IMS. Using the well-studied sequence of events that occurs during spermatogenesis and spermiogenesis in the mouse, aatids was measured by the unscheduled incorporation of [3H]dT into these germ cells which were recovered from the caudal epididymides 16 days after chemical treatment. Purification of the caudal sperm DNA at this time verified that the [3H]dT was incorporated into the DNA. For each chemical mutagen a study was made on the level of DNA repair occurring in early spermatids as a function of the administered, in vivo dose. Within experimental errors, all four chemicals produced a linear increase in DNA repair in early spermatids with increasing dose. Only the highest dose of MMS (100 mg/kg) produced a greater repair response than expected for a linear curve. At equimolar doses the most effective chemical in inducing DNA repair was MMS, followed by EMS, IMS and PMS. When testicular injections of [3H]dT were given at the same time as the intraperitoneal injections of the mutagens, the amount of unscheduled incorporation of [3H]dT into the DNA of early spermatids was maximized. Since [3H]dT has been shown to be available for incorporation into germ-cell DNA for only approximately 1 h after injection, all four mutagens must reach the DNA of early spermatids and begin producing "repairable" lesions within 1 h after treatment. The amount of DNA repair occurring at later times after chemical treatment of early spermatids was studied by testicular injections of [3H]dT 1/2, 1, 2 and 3 days after chemical treatment. Repair was still occurring in the early spermatids at 3 days post-treatment; this repair is most likely a manifestation of the finite rate of the repair process rather than resulting from newly alkylated DNA. For MMS and EMS there was a rapid decrease in the level of DNA repair in the first 1/2 day following treatment. This was followed by a much slower, exponential decrease in the level of repair out to 3 days post-treatment. The curves suggest that the amount of repair is proportional to the number of repairable lesions still present in the DNA. For PMS and IMS the level of repair decreases rapidly in the first 1/2 day after treatment and thereafter remains relatively constant through 3 days post-treatment. With all four mutagens, DNA repair in early spermatids was detectable at doses 5 to 10 times lower than those required to observe other genetic end points such as dominant lethals, translocations and specific-locus mutations in any germ-cell stage. The sensitivity of detection of in vivo DNA repair in the germ cells of male mice makes such a system a useful adjunct to other genetic tests for studying chemical mutagenesis in mammals.  相似文献   
213.
The solution structure of a mutant calmodulin (des84) lacking Glu84 in the central helix linking the two calmodulin lobes is substantially different from its crystal structure. As determined by small-angle X-ray scattering, the radius of gyration and the maximum linear dimension of des84 in the presence of 0.1 mM calcium are 20.8 Å and 62.5 Å, respectively. These respective dimensions are larger than those expected from the crystal structure of des84, 18.5 Å and 55.0 Å, and smaller than those expected from the crystal structure of wild type, 22.8 Å and 67.5 Å. The distance distribution function of des84 indicates that it assumes an elongated, dumbbell shape in solution. The solution scattering profile of des84 is indistinguishable from that of wild-type calmodulin. The calcium-dependent binding of melittin to des84 causes a change in its shape from elongated to spherical, as seen with other calmodulins. In comparison with calcium-saturated des84, calcium-free des84 is slightly elongated; a slight compaction is observed with native calmodulin. The observed differences between the averaged solution structure and the crystal structure of des84 suggests that an ensemble of structures is available to calmodulin in solution and that its target need not induce a change in its conformation. These results support the theory that the linker region of the central helix of calmodulin functions as a flexible tether. © 1996 Wiley-Liss, Inc.  相似文献   
214.
We have cloned, sequenced, and characterized cDNA of actins from five ciliate species of three different classes of the phylum Ciliophora: Karyorelictea (Loxodes striatus), Heterotrichea (Blepharisma japonicum, Blepharisma musculus), and Litostomatea (Didinium nasutum, Dileptus margaritifer). Loxodes striatus uses UGA as the stop codon and has numerous in-frame UAA and UAG, which are translated into glutamine. The other four species use UAA as the stop codon and have no in-frame UAG nor UGA. The putative amino acid sequences of the newly determined actin genes were found to be highly divergent as expected from previous findings of other ciliate actins. These sequences were also highly divergent from other ciliate actins, indicating that actin genes are highly diverse even within the phylum Ciliophora. Phylogenetic analysis showed high evolutionary rate of ciliate actins. Our results suggest that the evolutionary rate was accelerated because of the differences in molecular interactions.  相似文献   
215.
The Arabidopsis thaliana metal tolerance protein 1 (MTP1) of the cation diffusion facilitator family of membrane transport proteins can mediate the detoxification of Zn in Arabidopsis and yeast. Xenopus laevis oocytes expressing AtMTP1 accumulate more Zn than oocytes expressing the AtMTP1(D94A) mutant or water-injected oocytes. An AtMTP1-GFP fusion protein localizes to the vacuolar membrane in root and leaf cells. The analysis of Arabidopsis transformed with a promoter-GUS construct suggests that AtMTP1 is not produced throughout the plant, but primarily in the subpopulation of dividing, differentiating and expanding cells. RNA interference-mediated silencing of AtMTP1 causes Zn hypersensitivity and a reduction in Zn concentrations in vegetative plant tissues.  相似文献   
216.
Variable selection for multivariate failure time data   总被引:5,自引:0,他引:5  
  相似文献   
217.
Both NMR and IR studies of carbonyl (13C') isotopomers of designed helices can provide residue-level details regarding the fractional occurrence and melting behavior of helical phi/psi angles along the sequence of helical peptides, details that cannot be obtained from CD or 1H-NMR studies. We have studied a classic series of helical models, Ac-YGG-(KAXAA)3K-NH2 (X=A,V), in both aqueous and helix-favoring media containing fluoroalcohol cosolvents, including a solvent system allowing the observation of cold denaturation. These studies confirmed the strong N-capping associated with this sequence and revealed more extensive C-terminal fraying than that calculated using current helicity prediction algorithms. In the X=A series, the central residues are somewhat resistant to thermal melting; it instead occurs predominantly at the frayable C terminus. For the X=V series under cold-denaturing conditions, the temperature of maximal helicity is not uniform along the sequence and both solvated and nonsolvated helical alanine sites (13C=O stretches at 1592 cm(-1) and 1615 cm(-1), respectively) are apparent. Correlation between the two spectroscopies employed yielded the intriguing observation that the valine side chain is able to desolvate the i - 4 amide in short monomeric helices. In addition, we report further measurements of the temperature dependence of alanine statistical coil chemical shifts, the temperature dependence of the 13C chemical shift of urea (employed as chemical shift reference), and a useful formula for converting 13C' shifts into fractional helicities.  相似文献   
218.
Grb7 is a member of the Grb7 family of proteins, which also includes Grb10 and Grb14. All three proteins have been found to be overexpressed in certain cancers and cancer cell lines. In particular, Grb7 (along with the receptor tyrosine kinase erbB2) is overexpressed in 20%–30% of breast cancers. Grb7 binds to erbB2 and may be involved in cell signaling pathways that promote the formation of metastases and inflammatory responses. In a prior study, we reported the solution structure of the Grb7-SH2/erbB2 peptide complex. In this study, T1, T2, and steady-state NOE measurements were performed on the Grb7-SH2 domain, and the backbone relaxation behavior of the domain is discussed with respect to the potential function of an insert region present in all three members of this protein family. Isothermal titration calorimetry (ITC) studies were completed measuring the thermodynamic parameters of the binding of a 10-residue phosphorylated peptide representative of erbB2 to the SH2 domain. These measurements are compared to calorimetric studies performed on other SH2 domain/phosphorylated peptide complexes available in the literature.  相似文献   
219.
In Sphingomonas sp. A1, alginate is degraded by alginate lyases to its constituent monosaccharides, which are nonenzymatically converted to an α-keto acid, namely, 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH). The properties of the DEH-metabolizing enzyme and its gene in strain A1 were characterized. In the presence of alginate, strain A1 cells inducibly produced an NADPH-dependent DEH reductase (A1-R) in their cytoplasm. Molecular cloning of the enzyme gene indicated that A1-R belonged to the short-chain dehydrogenase/reductase superfamily and catalyzed the conversion of DEH to 2-keto-3-deoxy-d-gluconic acid most efficiently at around pH 7.0 and 50 °C. Crystal structures of A1-R and its complex with NADP were determined at around 1.6 Å resolution by X-ray crystallography. The enzyme consists of three layers (α/β/α), with a coenzyme-binding Rossmann fold. NADP is surrounded by positively charged residues, and Gly-38 and Arg-39 are crucial for NADP binding. Site-directed mutagenesis studies suggest that Ser-150, Tyr-164, and Lys-168 located around the Rossmann fold constitute the catalytic triad. To our knowledge, this is the first report on molecular cloning and structure determination of a bacterial DEH reductase responsible for alginate metabolism.  相似文献   
220.
MicroRNAs (miRs) involve in osteogenic differentiation and osteogenic potential of mesenchymal stem cells (MSCs). Accordingly, the present study aimed to further uncover role miR-149 plays in osteogenic differentiation of MSCs with the involvement of the stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) pathway. Initially, the osteogenic differentiation model was induced. Next, the positive expression of STRO-1 in periosteum, alkaline phosphatase (ALP) activity, osteocalcin (OCN) protein content, and the calcium deposition in MSCs were determined. MSCs were treated with DNA methyltransferase inhibitor 5-aza-CdR, SDF-1 neutralizing antibody, or CXCR4 antagonist AMD3100 to investigate their roles in osteogenic differentiation; with the expression of CD44, CD90, CD14, and CD45 detected. Furthermore, the levels of SDF-1 and CXCR4, and the genes related to stemness (Nanog, Oct-4, and Sox-2) were measured to explore the effects of miR-149. The obtained data revealed the upregulation of STRO-1 in the periosteum. miR-149 could specifically bind to SDF-1. Besides, increased miR-149 methylation, higher ALP activity and OCN content, decreased positive rates of CD44 and CD90, and increased positive rates of CD14 and CD45 were found in osteogenic differentiation of MSCs. Subsequently, 5-Aza-CdR treatment reversed the above-mentioned effects. MSCs were finally treated with SDF-1 neutralizing antibody or AMD3100 to decrease Nanog, Oct-4, and Sox-2 expression. Taken together these results, miR-149 hypermethylation has the potential to activate the SDF-1/CXCR4 pathway and further promote osteogenic differentiation of MSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号