首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1338篇
  免费   26篇
  国内免费   73篇
  1437篇
  2024年   1篇
  2023年   4篇
  2022年   14篇
  2021年   23篇
  2020年   13篇
  2019年   20篇
  2018年   19篇
  2017年   14篇
  2016年   11篇
  2015年   49篇
  2014年   77篇
  2013年   63篇
  2012年   57篇
  2011年   46篇
  2010年   32篇
  2009年   63篇
  2008年   52篇
  2007年   60篇
  2006年   71篇
  2005年   62篇
  2004年   65篇
  2003年   52篇
  2002年   38篇
  2001年   51篇
  2000年   36篇
  1999年   44篇
  1998年   45篇
  1997年   39篇
  1996年   36篇
  1995年   28篇
  1994年   29篇
  1993年   22篇
  1992年   30篇
  1991年   25篇
  1990年   22篇
  1989年   24篇
  1988年   21篇
  1987年   15篇
  1986年   15篇
  1985年   8篇
  1984年   11篇
  1983年   6篇
  1982年   7篇
  1981年   6篇
  1980年   4篇
  1979年   1篇
  1978年   4篇
  1976年   1篇
  1973年   1篇
排序方式: 共有1437条查询结果,搜索用时 11 毫秒
101.
Summary A previous study of genomic organization described the identification of nine potential coding regions in 150 kb of genomic DNA from the unc-22(IV) region of Caenorhabditis elegans. In this study, we focus on the genomic organization of a small interval of 0.1 map unit bordered on the right by unc-22 and on the left by the left-hand breakpoints of the deficiencies sDf9, sDf19 and sDf65. This small interval at present contains a single mutagenically defined locus, the essential gene let-56. The cosmid C11F2 has previously been used to rescue let-56. Therefore, at least some of C11F2 must reside in the interval. In this paper, we report the characterization of two coding elements that reside on C11F2. Analysis of nucleotide sequence data obtained from cDNAs and cosmid subclones revealed that one of the coding elements closely resembles aromatic amino acid decarboxylases from several species. The other of these coding elements was found to closely resemble a human growth factor activatable Na+/H+ antiporter. Pairs of oligonucleotide primers, predicted from both coding elements, have been used in PCR experiments to position these coding elements between the left breakpoint of sDf19 and the left breakpoint of sDf65, between the essential genes let-653 and let-56.  相似文献   
102.
103.
Due to the increasing prevalence of Dinophysis spp. and their toxins on every US coast in recent years, the need to identify and monitor for problematic Dinophysis populations has become apparent. Here, we present morphological analyses, using light and scanning electron microscopy, and rDNA sequence analysis, using a ~2-kb sequence of ribosomal ITS1, 5.8S, ITS2, and LSU DNA, of Dinophysis collected in mid-Atlantic estuarine and coastal waters from Virginia to New Jersey to better characterize local populations. In addition, we analyzed for diarrhetic shellfish poisoning (DSP) toxins in water and shellfish samples collected during blooms using liquid-chromatography tandem mass spectrometry and an in vitro protein phosphatase inhibition assay and compared this data to a toxin profile generated from a mid-Atlantic Dinophysis culture. Three distinct morphospecies were documented in mid-Atlantic surface waters: D. acuminata, D. norvegica, and a “small Dinophysis sp.” that was morphologically distinct based on multivariate analysis of morphometric data but was genetically consistent with D. acuminata. While mid-Atlantic D. acuminata could not be distinguished from the other species in the D. acuminata-complex (D. ovum from the Gulf of Mexico and D. sacculus from the western Mediterranean Sea) using the molecular markers chosen, it could be distinguished based on morphometrics. Okadaic acid, dinophysistoxin 1, and pectenotoxin 2 were found in filtered water and shellfish samples during Dinophysis blooms in the mid-Atlantic region, as well as in a locally isolated D. acuminata culture. However, DSP toxins exceeded regulatory guidance concentrations only a few times during the study period and only in noncommercial shellfish samples.  相似文献   
104.
105.
106.
107.
Huntington disease (HD) is a devastating neurologic disorder that is characterized by abnormal expansion of a CAG nt repeat in the first exon of the huntingtin (htt) gene, producing a mutant protein with an elongated polyglutamine stretch. The presence of this mutant protein is correlated with the characteristic loss of striatal neurons and the clinical manifestation of HD. Currently there is no effective treatment for the associated cell death. The aim of this study was to evaluate an innovative strategy combining RNA interference (RNAi) and gene transfer via the nonviral Sleeping Beauty (SB) transposon system to down-regulate Htt expression. siRNA expression vectors were designed to target exons 1, 4, 6, and 62 of the human htt gene. Real-time RT-PCR and Western blot analysis were used to quantify Htt mRNA and protein levels, respectively, in human cell lines. The results indicated that selected siRNA constructs significantly decreased Htt mRNA and protein levels relative to controls. In addition, SB transposition of the siRNA constructs into the genome reduced long-term protein expression of Htt by approximately 90%. The combination of siRNA, the SB transposon, and an accurate transgenic mouse model may permit evaluation of this approach in preventing the pathogenesis associated with expression of mutant Htt.  相似文献   
108.

Background

Barley, globally the fourth most important cereal, provides food and beverages for humans and feed for animal husbandry. Maximizing grain yield under varying climate conditions largely depends on the optimal timing of flowering. Therefore, regulation of flowering time is of extraordinary importance to meet future food and feed demands. We developed the first barley nested association mapping (NAM) population, HEB-25, by crossing 25 wild barleys with one elite barley cultivar, and used it to dissect the genetic architecture of flowering time.

Results

Upon cultivation of 1,420 lines in multi-field trials and applying a genome-wide association study, eight major quantitative trait loci (QTL) were identified as main determinants to control flowering time in barley. These QTL accounted for 64% of the cross-validated proportion of explained genotypic variance (pG). The strongest single QTL effect corresponded to the known photoperiod response gene Ppd-H1. After sequencing the causative part of Ppd-H1, we differentiated twelve haplotypes in HEB-25, whereof the strongest exotic haplotype accelerated flowering time by 11 days compared to the elite barley haplotype. Applying a whole genome prediction model including main effects and epistatic interactions allowed predicting flowering time with an unmatched accuracy of 77% of cross-validated pG.

Conclusions

The elaborated causal models represent a fundamental step to explain flowering time in barley. In addition, our study confirms that the exotic biodiversity present in HEB-25 is a valuable toolbox to dissect the genetic architecture of important agronomic traits and to replenish the elite barley breeding pool with favorable, trait-improving exotic alleles.
  相似文献   
109.
V-ATPases are structurally conserved and functionally versatile proton pumps found in all eukaryotes. The yeast V-ATPase has emerged as a major model system, in part because yeast mutants lacking V-ATPase subunits (vma mutants) are viable and exhibit a distinctive Vma- phenotype. Yeast vma mutants are present in ordered collections of all non-essential yeast deletion mutants, and a number of additional phenotypes of these mutants have emerged in recent years from genomic screens. This review summarizes the many phenotypes that have been associated with vma mutants through genomic screening. The results suggest that V-ATPase activity is important for an unexpectedly wide range of cellular processes. For example, vma mutants are hypersensitive to multiple forms of oxidative stress, suggesting an antioxidant role for the V-ATPase. Consistent with such a role, vma mutants display oxidative protein damage and elevated levels of reactive oxygen species, even in the absence of an exogenous oxidant. This endogenous oxidative stress does not originate at the electron transport chain, and may be extra-mitochondrial, perhaps linked to defective metal ion homeostasis in the absence of a functional V-ATPase. Taken together, genomic data indicate that the physiological reach of the V-ATPase is much longer than anticipated. Further biochemical and genetic dissection is necessary to distinguish those physiological effects arising directly from the enzyme’s core functions in proton pumping and organelle acidification from those that reflect broader requirements for cellular pH homeostasis or alternative functions of V-ATPase subunits.  相似文献   
110.
Internal tandem duplication of the FMS-like tyrosine kinase (FLT3-ITD) receptor is present in 20% of acute myeloid leukemia (AML) patients and it has been associated with an aggressive AML phenotype. FLT3-ITD expressing cell lines have been shown to generate increased levels of reactive oxygen species (ROS) and DNA double strand breaks (DSBs). However, the molecular basis of how FLT3-ITD-driven ROS leads to the aggressive form of AML is not clearly understood. Our group has previously reported that inhibition of FLT3-ITD signaling results in post-translational down-regulation of p22phox, a small membrane-bound subunit of the NADPH oxidase (NOX) complex. Here we demonstrated that 32D cells, a myeloblast-like cell line transfected with FLT3-ITD, have a higher protein level of p22phox and p22phox-interacting NOX isoforms than 32D cells transfected with the wild type FLT3 receptor (FLT3-WT). The inhibition of NOX proteins, p22phox, and NOX protein knockdowns caused a reduction in ROS, as measured with a hydrogen peroxide (H2O2)-specific dye, peroxy orange 1 (PO1), and nuclear H2O2, as measured with nuclear peroxy emerald 1 (NucPE1). These reductions in the level of H2O2 following the NOX knockdowns were accompanied by a decrease in the number of DNA DSBs. We showed that 32D cells that express FLT3-ITD have a higher level of both oxidized DNA and DNA DSBs than their wild type counterparts. We also observed that NOX4 and p22phox localize to the nuclear membrane in MV4–11 cells expressing FLT3-ITD. Taken together these data indicate that NOX and p22phox mediate the ROS production from FLT3-ITD that signal to the nucleus causing genomic instability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号