首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   983篇
  免费   18篇
  国内免费   52篇
  1053篇
  2023年   2篇
  2022年   13篇
  2021年   20篇
  2020年   10篇
  2019年   15篇
  2018年   15篇
  2017年   14篇
  2016年   10篇
  2015年   47篇
  2014年   74篇
  2013年   46篇
  2012年   53篇
  2011年   43篇
  2010年   24篇
  2009年   49篇
  2008年   44篇
  2007年   52篇
  2006年   61篇
  2005年   50篇
  2004年   45篇
  2003年   32篇
  2002年   31篇
  2001年   43篇
  2000年   26篇
  1999年   35篇
  1998年   31篇
  1997年   27篇
  1996年   24篇
  1995年   17篇
  1994年   16篇
  1993年   12篇
  1992年   15篇
  1991年   11篇
  1990年   12篇
  1989年   9篇
  1988年   9篇
  1987年   3篇
  1986年   9篇
  1985年   1篇
  1982年   3篇
排序方式: 共有1053条查询结果,搜索用时 15 毫秒
41.
42.
蜘蛛基因组DNA提取方法的比较   总被引:7,自引:1,他引:7  
分别用SDS法,SK251基因组DNA小量抽提试剂盒法,自制试剂盒法,对蜘蛛组织的基因组DNA进行了提取,经比较,自制试剂盒法对提取蜘蛛基因组DNA最简便面又有效的方法。  相似文献   
43.
The aim of the study was to characterise the diversity and niche-specific colonization of Vibrio spp. in a marine aquaria system by a cultivation-dependent approach. A total of 53 Vibrio spp. isolates were cultured from different ecological niches in a marine aquarium including microplastic (MP) and sandy sediment particles (12 weeks after added sterile to the system), detritus, and the surrounding aquarium water. Based on the 16S rRNA gene sequence phylogeny and multilocus sequence analysis (MLSA) the isolates were assigned to seven different phylotypes. Six phylotypes were identified by high probability to the species level. The highest phylotype diversity was cultured from detritus and water (six out of seven phylotypes), while only two phylotypes were cultured from MP and sediment particles. Genomic fingerprinting indicated an even higher genetic diversity of Vibrio spp. at the strain (genotype) level. Again, the highest diversity of genotypes was recovered from detritus and water while only few partially particle-type specific genotypes were cultured from MP and sediment particles. Phylotype V-2 formed an independent branch in the MLSA tree and could not be assigned to a described Vibrio species. Isolates of this phylotype showed highest 16S rRNA gene sequence similarity to type strains of Vibrio japonicus (98.5%) and Vibrio caribbeanicus (98.4%). A representative isolate, strain THAF100T, was characterised by a polyphasic taxonomic approach and Vibrio aquimaris sp. nov., with strain THAF100T (=DSM 109633T = LMG 31434T = CIP 111709T) as type strain, is proposed as novel species.  相似文献   
44.
45.
Thirty-four strains belonging to various species of the genus Thermus (T. aquaticus, "T. thermophilus," "T. brockianus," T. scotoductus, and genomic species 2) isolated from hot springs of different geographical areas were examined for plasmid content and restriction fragment length polymorphism (RFLP) of plasmid DNAs. The four strains of the numerical taxonomy cluster E of genomic species 2 did not harbor plasmid DNA. Overall examination of the HindIII-RFLP profiling of plasmid DNA showed considerable variability between and within genomic species, with the exception of presumed clonal isolates. In spite of this heterogeneity, HindIII plasmid digests within a numerical taxonomic cluster gave a subset of restriction fragments of similar or identical length. Strains belonging to genomic species 2 or unclassified isolates from S. Pedro do Sul that harbored plasmid DNA (7 of the 14 strains studied) exhibited strong DNA homology between plasmid regions. No homologous sequences to these plasmid regions were found in chromosomal DNA from strains isolated from S. Pedro do Sul in which no plasmids were detected. The strains belonging to T. scotoductus formed two plasmid DNA homology groups, as estimated by probing with a plasmid fragment that coincided with the two numerical taxonomy clusters proposed previously. Among the other species, homology of plasmid regions was also found between some strains. Strong homology was also found between plasmid regions from some strains of different taxonomic groups, isolated from the same and from different sources, suggesting that these sequences are highly conserved in plasmids present in Thermus. For plasmid-containing strains, results of plasmid RFLP profiling/DNA homology appear promising for the typing of Thermus at the level of biotypes or of individual strains, namely, for monitoring the diversity and frequency of isolates from a particular hot spring. Received: 24 October 1994 / Accepted: 6 March 1995  相似文献   
46.
We recently identified a Transposase domain protein called Metnase, which assists in repairing DNA double-strand breaks (DSB) via non-homologous end-joining (NHEJ), and is important for foreign DNA integration into a host cell genome. Since integration is essential for productive lentiviral infection we examined whether Metnase expression levels could have an influence on lentiviral genomic integration. Using cells stably transduced to either over- or under-express Metnase we determined that the expression level of Metnase did indeed correlate with live lentiviral integration. Changes in Metnase levels were accompanied by changes in the number of copies of integrated lentiviral cDNA. While Metnase levels affected lentiviral integration, it had no effect on the amount of either total cellular viral RNA, cDNA or 2-LTR circles. Therefore, Metnase enhances the integration of lentivirus DNA into the host cell genome.  相似文献   
47.
Summary Several genes of the achaete-scute complex (ASC) of Drosophila melanogaster encode a 60 amino acids long conserved domain which shares a significant homology with a region of the vertebrate myc proteins. Based on these results, the existence of a family of Drosophila genes that would share both this conserved domain and the neurogenic function of the AS-C has been postulated. To test this proposal, we have searched a D. melanogaster genomic library with a probe that encodes the conserved domain. Only under very low stringency hybridization conditions, clones not belonging to the AS-C cross-hybridized with the probe. Those that gave the strongest signals were characterized. Sequencing of the cross-hybridizing regions showed that they had no significant homology with the conserved domain, the sequence similarity extending at the most for 37 nucleotides. Although our results do not conclusively disprove the existence of a family of AS-C-like genes, they indicate that the conservation of the domain would be lower than that found for shared motifs in other families of Drosophila developmental genes.  相似文献   
48.
TEN1 is a component of the mammalian CTC1-STN1-TEN1 complex. CTC1 and/or STN1 functions in telomere duplex replication, C-strand fill-in, and genome-wide restart of replication following fork stalling. Here we examine the role of human TEN1 and ask whether it also functions as a specialized replication factor. TEN1 depletion causes an increase in multitelomere fluorescent in situ hybridization (FISH) signals similar to that observed after CTC1 or STN1 depletion. However, TEN1 depletion also results in increased telomere loss. This loss is not accompanied by increased telomere deprotection, recombination, or T-circle release. Thus, it appears that both the multiple telomere signals and telomere loss stem from problems in telomere duplex replication. TEN1 depletion can also affect telomere length, but whether telomeres lengthen or shorten is cell line-dependent. Like CTC1 and STN1, TEN1 is needed for G-overhang processing. Depletion of TEN1 does not effect overhang elongation in mid-S phase, but it delays overhang shortening in late S/G2. These results indicate a role for TEN1 in C-strand fill-in but do not support a direct role in telomerase regulation. Finally, TEN1 depletion causes a decrease in genome-wide replication restart following fork stalling similar to that observed after STN1 depletion. However, anaphase bridge formation is more severe than with CTC1 or STN1 depletion. Our findings indicate that TEN1 likely functions in conjunction with CTC1 and STN1 at the telomere and elsewhere in the genome. They also raise the possibility that TEN1 has additional roles and indicate that TEN1/CTC1-STN1-TEN1 helps solve a wide range of challenges to the replication machinery.  相似文献   
49.
A Genomic Islands (GI) is a chunk of DNA sequence in a genome whose origin can be traced back to other organisms or viruses. The detection of GIs plays an indispensable role in biomedical research, due to the fact that GIs are highly related to special functionalities such as disease-causing GIs - pathogenicity islands. It is also very important to visualize genomic islands, as well as the supporting features corresponding to the genomic islands in the genome. We have developed a program, Genomic Island Visualization (GIV), which displays the locations of genomic islands in a genome, as well as the corresponding supportive feature information for GIs. GIV was implemented in C++, and was compiled and executed on Linux/Unix operating systems.

Availability

GIV is freely available for non-commercial use at http://www5.esu.edu/cpsc/bioinfo/software/GIV  相似文献   
50.

Background

Shigella dysenteriae type 1 (Sd1) causes recurrent epidemics of dysentery associated with high mortality in many regions of the world. Sd1 infects humans at very low infectious doses (10 CFU), and treatment is complicated by the rapid emergence of antibiotic resistant Sd1 strains. Sd1 is only detected in the context of human infections, and the circumstances under which epidemics emerge and regress remain unknown.

Results

Phylogenomic analyses of 56 isolates collected worldwide over the past 60 years indicate that the Sd1 clone responsible for the recent pandemics emerged at the turn of the 20th century, and that the two world wars likely played a pivotal role for its dissemination. Several lineages remain ubiquitous and their phylogeny indicates several recent intercontinental transfers. Our comparative genomics analysis reveals that isolates responsible for separate outbreaks, though closely related to one another, have independently accumulated antibiotic resistance genes, suggesting that there is little or no selection to retain these genes in-between outbreaks. The genomes appear to be subjected to genetic drift that affects a number of functions currently used by diagnostic tools to identify Sd1, which could lead to the potential failure of such tools.

Conclusions

Taken together, the Sd1 population structure and pattern of evolution suggest a recent emergence and a possible human carrier state that could play an important role in the epidemic pattern of infections of this human-specific pathogen. This analysis highlights the important role of whole-genome sequencing in studying pathogens for which epidemiological or laboratory investigations are particularly challenging.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-355) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号