首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2021篇
  免费   54篇
  国内免费   121篇
  2024年   3篇
  2023年   24篇
  2022年   52篇
  2021年   65篇
  2020年   51篇
  2019年   89篇
  2018年   57篇
  2017年   50篇
  2016年   37篇
  2015年   99篇
  2014年   187篇
  2013年   147篇
  2012年   104篇
  2011年   87篇
  2010年   44篇
  2009年   83篇
  2008年   92篇
  2007年   89篇
  2006年   97篇
  2005年   76篇
  2004年   85篇
  2003年   63篇
  2002年   40篇
  2001年   39篇
  2000年   30篇
  1999年   66篇
  1998年   48篇
  1997年   23篇
  1996年   27篇
  1995年   25篇
  1994年   38篇
  1993年   23篇
  1992年   23篇
  1991年   38篇
  1990年   23篇
  1989年   10篇
  1988年   13篇
  1987年   13篇
  1986年   8篇
  1985年   9篇
  1984年   4篇
  1982年   5篇
  1981年   5篇
  1978年   3篇
  1976年   1篇
  1974年   1篇
排序方式: 共有2196条查询结果,搜索用时 31 毫秒
101.
Chromosomal instability (CIN) refers to high rates of chromosomal gains and losses and is a major cause of genomic instability of cells. It is thought that CIN caused by loss of mitotic checkpoint contributes to carcinogenesis. In this study, we evaluated the competence of mitotic checkpoint in hepatoma cells and investigated the cause of mitotic checkpoint defects. We found that 6 (54.5%) of the 11 hepatoma cell lines were defective in mitotic checkpoint control as monitored by mitotic indices and flow-cytometric analysis after treatment with microtubule toxins. Interestingly, all 6 hepatoma cell lines with defective mitotic checkpoint showed significant underexpression of mitotic arrest deficient 2 (MAD2), a key mitotic checkpoint protein. The level of MAD2 underexpression was significantly associated with defective mitotic checkpoint response (p<0.001). In addition, no mutations were found in the coding sequences of MAD2 in all 11 hepatoma cell lines. Our findings suggest that MAD2 deficiency may cause a mitotic checkpoint defect in hepatoma cells.  相似文献   
102.
Protein N-myristoylation is an important lipid modification that affects the activity and membrane-binding properties of crucial proteins belonging to signal transduction cascades. The aim of this work was to develop a rapid and easy diagnostic method to check for (i) effective N-myristoylation of any given protein and (ii) easy proteome annotation. The N-myristoylation reaction was coupled to that of pyruvate dehydrogenase, and NADH was continuously detected spectrophotometrically. This method was optimized for and applied to full-length Saccharomyces cerevisiae and Arabidopsis thaliana N-myristoyltransferases and two A. thaliana enzyme derivatives. The data were validated by comparison with a previously described discontinuous assay, modification of the chemical nature of the substrates, and use of specific inhibitors. The kinetics of N-myristoylation were determined in vitro with various compounds including a full-length polypeptide substrate, a small G protein of the RAB family already known to be N-myristoylated in vivo. This automated assay can be used for proteomic studies to determine the N-myristoylation state of any protein.  相似文献   
103.
We calculated occurrences of all dinucleotide and trinucleotide microsatellites in the human, mouse, and yeast genomes. The microsatellites were considered separately not only according to the repeated dinucleotide or trinucleotide and the microsatellite length but also according to the starting/terminal nucleotide. The analysis showed that dramatically non-equal amounts occurred in the human genome of microsatellites that differed only by the terminal nucleotides. For example, the 23-mer (TTG)(7)TT occurs 635 times in the human genome whereas (GTT)(7)GT is present only three times in the human genome though the two 23-mers share a 22 nucleotide sequence. The dramatically non-equal occurrences of microsatellites differing only by the terminal nucleotides are observed for most dinucleotide and trinucleotide microsatellites and in all analyzed genomes. We suppose that the strikingly non-equal genomic occurrences of these closely related microsatellites originate from conformational properties of DNA.  相似文献   
104.
Anabaena sp. PCC 7120 is a cyanobacterium capable of performing several important biological functions: photosynthesis, nitrogen fixation, cell differentiation, cell-cell communication, etc. These activities require an extensive signaling capability in order to respond to the changing environment. Based on the genomic data, we have retrieved several gene families encoding signaling components. It is estimated that 211 genes encode two-component signaling elements, and 66 genes encode Ser/Thr kinases and phosphatases. These genes together represent 4.2% of the coding capacity of the whole genome, making Anabaena PCC 7120 a leading member among prokaryotes in terms of its signaling potential. It is known that two-component systems are composed of a few basic modules that can arrange into different structures best adapted for each signaling system. Many proteins in Anabaena PCC 7120 have incorporated both modules of two-component systems and catalytic domains of either Ser/Thr kinases or phosphatases. A family of 13 genes encode proteins with both a Ser/Thr kinase domain and a His kinase domain, and another four genes were also found whose products have both a response regulator domain and a Ser/Thr phosphatase domain. Of all the signaling proteins in Anabaena PCC 7120, about one third (35%) are conserved in the genome of the unicellular cyanobacterium strain Synechocystis sp. PCC 6803. Interestingly, one subfamily of His kinases and two subfamilies of response regulators are found in Anabaena PCC 7120 but are absent in Synechocystis PCC 6803. This study constitutes a basis for analyses of signal transduction in Anabaena PCC 7120 using functional genomic approaches.  相似文献   
105.
Comparative genome analyses contribute significantly to our understanding of bacterial evolution and indicate that bacterial genomes are constantly evolving structures. The gene content and organisation of chromosomes of lactic acid bacteria probably result from a strong evolutionary pressure toward optimal growth of these microorganisms in milk. The genome plasticity of Lactococcus lactis was evaluated at inter- and intrasubspecies levels by different experimental approaches. Comparative genomics showed that the lactococcal genomes are not highly plastic although large rearrangements (a.o. deletions, inversions) can occur. Experimental genome shuffling using a new genetic strategy based on the Cre-loxP recombination system revealed that two domains are under strong constraints acting to maintain the original chromosome organisation: a large region around the replication origin, and a smaller one around the putative terminus of replication. Future knowledge of the rules leading to an optimal genome organisation could facilitate the definition of new strategies for industrial strain improvement.  相似文献   
106.
To investigate the complexity of the endomembrane transport system in the early diverging eukaryote, Giardia lamblia, we characterized homologues of the GTP-binding proteins, Rab1 and Rab2, involved in regulating vesicular trafficking between the endoplasmic reticulum and Golgi in higher eukaryotes, and GDI, which plays a key role in the cycling of Rab proteins. G. lamblia Rab1, 2.1, and GDI sequences largely resemble yeast and mammalian homologues, are transcribed as 0.66-, 0.62-, and 1.4-kb messages, respectively, and are expressed during growth and encystation. Western analyses detected an abundant Rab/GDI complex at approximately 80 kDa, and free GDI (60 kDa) in both trophozoites and encysting cells. Immunoelectron microscopy with antibody to Rab1 localized Rab with ER, encystation secretory vesicles, and lysosome-like peripheral vesicles. GDI associated with these structures, and with small vesicles found throughout the cytoplasm, consistent with GDI's key role in Rab cycling between organelles within the cell.  相似文献   
107.
Yue GH  Beeckmann P  Geldermann H 《Genetica》2002,114(2):113-119
During genotyping of 38 microsatellites for QTL (quantitative trait loci) mapping in three F2 swine populations, five mutant alleles were detected in a total of 66,436 parent-offspring transfers of microsatellite alleles, which gives an overall mutation rate of 7.52×10–5 per locus per generation. No significant (P<0.05) association between mutation rates and other factors (i.e., GC contents in the flanking regions, heterozygosity, and repeat number) was revealed. Detailed sequencing showed that four out of five mutant alleles were caused by insertions of one to five repeats, respectively. The other mutant allele was produced by either an insertion of three repeats or a change of 30 base pairs (a deletion of 16 CT repeats and an insertion of one CA repeat). An insertion of one base pair in the flanking region of a microsatellite was also detected. Together, these data indicate that expansions are more common than contractions among microsatellites and that the mutation processes are very complicated, do not fit with the strict stepwise mutation model and may vary from locus to locus.  相似文献   
108.
Genomic trees have been constructed based on the presence and absence of families of protein-encoding genes observed in 27 complete genomes, including genomes of 15 free-living organisms. This method does not rely on the identification of suspected orthologs in each genome, nor the specific alignment used to compare gene sequences because the protein-encoding gene families are formed by grouping any protein with a pairwise similarity score greater than a preset value. Because of this all inclusive grouping, this method is resilient to some effects of lateral gene transfer because transfers of genes are masked when the recipient genome already has a homolog (not necessarily an ortholog) of the incoming gene. Of 71 genes suspected to have been laterally transferred to the genome of Aeropyrum pernix, only approximately 7 to 15 represent genes where a lateral gene transfer appears to have generated homoplasy in our character dataset. The genomic tree of the 15 free-living taxa includes six different bacterial orders, six different archaeal orders, and two different eukaryotic kingdoms. The results are remarkably similar to results obtained by analysis of rRNA. Inclusion of the other 12 genomes resulted in a tree only broadly similar to that suggested by rRNA with at least some of the differences due to artifacts caused by the small genome size of many of these species. Very small genomes, such as those of the two Mycoplasma genomes included, fall to the base of the Bacterial domain, a result expected due to the substantial gene loss inherent to these lineages. Finally, artificial ``partial genomes' were generated by randomly selecting ORFs from the complete genomes in order to test our ability to recover the tree generated by the whole genome sequences when only partial data are available. The results indicated that partial genomic data, when sampled randomly, could robustly recover the tree generated by the whole genome sequences. Received: 30 May 2001 / Accepted: 10 October 2001  相似文献   
109.
When divergence between viral species is large, the analysis and comparison of nucleotide or protein sequences are dependent on mutation biases and multiple substitutions per site leading, among other things, to the underestimation of branch lengths in phylogenetic trees. To avoid the problem of multiply substituted sites, a method not directly based on the nucleic or protein sequences has been applied to retroviruses. It consisted of asking questions about genome structure or organization, and gene function, the series of answers creating coded sequences analyzed by phylogenic software. This method recovered the principal retroviral groups such as the lentiviruses and spumaviruses and highlighted questions and answers characteristic of each group of retroviruses. In general, there was reasonable concordance between the coded genome methodology and that based on conventional phylogeny of the integrase protein sequence, indicating that integrase was fixing mutations slowly enough to marginalize the problem of multiple substitutions at sites. To a first approximation, this suggests that the acquisition of novel genetic features generally parallels the fixation of amino acid substitutions. Received: 18 May 2001 / Accepted: 7 September 2001  相似文献   
110.
Comparative genetic mapping in interspecific pedigrees presents a powerful approach to study genetic differentiation, genome evolution and reproductive isolation in diverging species. We used this approach for genetic analysis of an F1 hybrid of two Eucalyptus tree species, Eucalyptus grandis (W. Hill ex Maiden.) and Eucalyptus globulus (Labill.). This wide interspecific cross is characterized by hybrid inviability and hybrid abnormality. Approximately 20% of loci in the genome of the F1 hybrid are expected to be hemizygous due to a difference in genome size between E. grandis (640 Mbp) and E. globulus (530 Mbp). We investigated the extent of colinearity between the two genomes and the distribution of hemizygous loci in the F1 hybrid using high-throughput, semi-automated AFLP marker analysis. Two pseudo-backcross families (backcrosses of an F1 individual to non-parental individuals of the parental species) were each genotyped with more than 800 AFLP markers. This allowed construction of de novo comparative genetic linkage maps of the F1 hybrid and the two backcross parents. All shared AFLP marker loci in the three single-tree parental maps were found to be colinear and little evidence was found for gross chromosomal rearrangements. Our results suggest that hemizygous AFLP loci are dispersed throughout the E. grandis chromosomes of the F1 hybrid.Communicated by O. Savolainen  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号