首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   5篇
  国内免费   1篇
  169篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   10篇
  2013年   13篇
  2012年   4篇
  2011年   11篇
  2010年   9篇
  2009年   10篇
  2008年   13篇
  2007年   17篇
  2006年   17篇
  2005年   11篇
  2004年   8篇
  2003年   8篇
  2002年   7篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
排序方式: 共有169条查询结果,搜索用时 0 毫秒
161.
Genistein, a soy-derived isoflavone, has been suggested for breast cancer prevention; however, use of soy products for this purpose remains controversial. Genistein has been reported to regulate growth of tumor cells, although the involved molecular mechanisms are not defined. Here we report that genistein induces apoptosis in breast cancer cells via activation of the Ca2+ -dependent proapoptotic proteases, mu-calpain, and caspase-12. The treatment of MCF-7 breast cancer cells with genistein induced a sustained increase in concentration of intracellular Ca2+ resulting from depletion of the endoplasmic reticulum Ca2+ stores. This increase in Ca2+ was associated with activation of mu-calpain and caspase-12, as evaluated with the calpain and caspase-12 substrates and antibodies to active (cleaved) forms of the enzymes. Selective inhibition of Ca2+ binding sites of mu-calpain, forced increase of the cytosolic Ca2+ buffering capacity, and caspase inhibition decreased apoptotic indices in the genistein-treated cells. Our results suggest that Ca2+ -dependent proteases are potential targets for genistein in breast cancer cells and that the cellular Ca2+ regulatory activity of genistein underlies its apoptotic mechanism.  相似文献   
162.
Early experiences, including prenatal environment, are known to influence a wide variety of mechanisms involved in the phenotype elaboration. We investigated the effect of the addition of endocrine disruptors or of a methyltransferase inhibitor during the embryonic development of quails from different genetic backgrounds (four different quail lines) on their growth and egg-laying performances. Fifty-four pairs of parents per line were used and fertilised eggs from each pair were randomly divided into five groups: a control group without any injection, an injected control group treated by injection into the egg of sesame oil, and three groups treated by injection of Genistein, Bisphenol A or 5-Aza-2′-deoxycytidine. All quails were individually weighed at 8, 21, 36 and 78 days. The age at first egg laid and the number of eggs laid were recorded. These analyses revealed a significant impact of the treatment on growth but no influence on the egg-laying traits. All three molecules significantly affected at least one of the analysed growth traits. In conclusion, we showed that the injection of endocrine disruptors or DNA methyltransferase inhibitor into the egg had significant effects on quail development; these effects were specific to each treatment, but no interaction between line and treatment was observed.  相似文献   
163.
The soy-derived phytoestrogen genistein (GEN) has received attention for its potential benefits on the cardiovascular system by providing direct protection to cardiomyocytes against pathophysiological stresses. Here, we employed a proteomic approach to study the concentration-dependent effects of GEN treatments on cardiomyocytes. Cultured HL-1 cardiomyocytes were treated with low (1μM) and high (50μM) concentrations of GEN. Proteins were pre-fractionated by sequential hydrophilic/hydrophobic extraction and both protein fractions from each treatment group were separated by 2D gel electrophoresis (2DE). Overall, approximately 2,700 spots were visualized on the 2D gels. Thirty-nine and 99 spots changed in volume relative to controls (p<0.05) following the low- and high-concentration GEN treatments, respectively. From these spots, 25 and 62 protein species were identified by ESI-MS/MS and Mascot database searching, respectively. Identified proteins were further categorized according to their functions and possible links to cardioprotection were discussed. MetaCore gene ontology analysis suggested that 1μM GEN significantly impacted the anti-apoptosis process, and that both the low and high concentrations of GEN influenced the glucose catabolic process and regulation of ATPase activity. This proteomics study provides the first global insight into the molecular events triggered by GEN treatment in cardiomyocytes.  相似文献   
164.
Yoshida N  Mizuno K 《Cytotechnology》2012,64(3):241-247
Phytoestrogens are a group of naturally occurring compounds that have weak estrogenic activity. Genistein and daidzein are major phytoestrogens produced by soybeans. It has been reported previously that at high concentration, some phytoestrogens inhibit cell cycle progression of mouse germinal vesicle (GV) oocytes, but the environmentally relevant level is much lower. Here we show the effects of low concentrations of the isoflavones genistein, daidzein and the daidzein metabolite, equol, on mouse oocyte maturation. GV oocytes denuded of cumulus cells were cultured in TaM medium containing low levels (5 μM) of genistein, daidzein. or equol. In all cases, the oocytes underwent normal GV break down, first polar body extrusion and became arrested at metaphase II (mII). As judged by fluorescence microscopy, the treated mII oocytes exhibited normal distributions of actin microfilaments, cortical granules and metaphase spindle formation with condensed metaphase chromatin. Moreover, mRNA expression levels of the cytostatic factors Emi2 and Mos were similar to those of their respective controls. These data suggest that exposure of maturing GV oocytes to environmental levels of genistein, daidzein or equol in vitro do not cause negative effects on maturation to produce mII oocytes.  相似文献   
165.
《Phytomedicine》2014,21(6):912-918
Extracts of ginkgo (Ginkgo biloba) leaf are widely available worldwide in herbal medicinal products, dietary supplements, botanicals and complementary medicines, and several pharmacopoeias contain monographs for ginkgo leaf, leaf extract and finished products. Being a high-value botanical commodity, ginkgo extracts may be the subject of economically motivated adulteration. We analysed eight ginkgo leaf retail products purchased in Australia and Denmark and found compelling evidence of adulteration with flavonol aglycones in three of these. The same three products also contained genistein, an isoflavone that does not occur in ginkgo leaf.Although the United States Pharmacopeia – National Formulary (USP-NF) and the British and European Pharmacopoeias stipulate a required range for flavonol glycosides in ginkgo extract, the prescribed assays quantify flavonol aglycones. This means that these pharmacopoeial methods are not capable of detecting adulteration of ginkgo extract with free flavonol aglycones.We propose a simple modification of the USP-NF method that addresses this problem: by assaying for flavonol aglycones pre and post hydrolysis the content of flavonol glycosides can be accurately estimated via a simple calculation. We also recommend a maximum limit be set for free flavonol aglycones in ginkgo extract.  相似文献   
166.
Investigation of the mechanistic bases and physiological importance of cAMP regulation of HCN channels has exploited an arginine to glutamate mutation in the nucleotide-binding fold, an approach critically dependent on the mutation selectively lowering the channel's nucleotide affinity. In apparent conflict with this, in intact Xenopus oocytes, HCN and HCN-RE channels exhibit qualitatively and quantitatively distinct responses to the tyrosine kinase inhibitor, genistein — the estrogenic isoflavonoid strongly depolarizes the activation mid-point of HCN1-R538E, but not HCN1 channels (+ 9.8 mV ± 0.9 versus + 2.2 mV ± 0.6) and hyperpolarizes gating of HCN2 (− 4.8 mV ± 1.0) but depolarizes gating of HCN2-R591E (+ 13.2 mV ± 2.1). However, excised patch recording, X-ray crystallography and modeling reveal that this is not due to either a fundamental effect of the mutation on channel gating per se or of genistein acting as a mutation-sensitive partial agonist at the cAMP site. Rather, we find that genistein equivalently moves both HCN and HCN-RE channels closer to the open state (rendering the channels inherently easier to open but at a cost of decreasing the coupling energy of cAMP) and that the anomaly reflects a balance of these energetic effects with the isoform-specific inhibition of activation by the nucleotide gating ring and relief of this by endogenous cAMP. These findings have specific implications with regard to findings based on HCN-RE channels and kinase antagonists and general implications with respect to interpretation of drug effects in mutant channel backgrounds.  相似文献   
167.
Antibacterial activities of various flavonoids have been reported previously, but mechanism(s) of their action on bacterial cells remain(s) largely unknown. Here, we investigated effects of genistein, an isoflavone, and representatives of other flavonoids: daidzein (another isoflavone), apigenin (a flavone), naringenin (a flavanone) and kaempferol (a flavonol), on commonly used laboratory strains of model bacterial species: Escherichia coli, Vibrio harveyi and Bacillus subtilis. We found that E. coli was resistant to all tested flavonoids at concentrations up to 0.1 mM, while high sensitivity of V. harveyi to most of them (except daidzein, which exhibited significantly less pronounced effect) was observed. Effects of the flavonoids on B. subtilis were relatively intermediate to the two extremes, i.e., E. coli and V. harveyi. Action of genistein on bacterial cells was investigated in more detail to indicate changed cell morphology (formation of filamentous cells) of V. harveyi and drastic inhibition of global synthesis of DNA and RNA as shortly as 15 min after addition of this isoflavone to a bacterial culture to a final concentration of 0.1 mM. Protein synthesis inhibition was also apparent, but delayed. Both cell morphology and synthesis of nucleic acids and proteins were unaffected in E. coli cultures under analogous conditions. Studies on cell survival suggest that genistein is a bacteriostatic agent rather than a bactericidal compound.  相似文献   
168.
169.
Genistein aglycone (GEN) has a favorable effect on bone loss. We investigated the effects of GEN alone or in combination with supplemental calcium and vitamin D3 in an animal model of bone loss to evaluate if there was additional benefit. Ovariectomized (OVX) and SHAM-OVX rats were used. OVX were divided into 12 groups and randomized to receive: GEN at 27, 54, 200, 500 or 1000 mg (human equivalent dose (HED)/day/ip injection alone or with calcium carbonate (Ca) (360 mg/kg/day/gavages) and vitamin D3 (D3) (50 IU/kg/day/gavages) or Ca/D3 without GEN or untreated for 6 weeks. SHAM-OVX were randomized into 7 groups and treated with: Ca and D3 alone or in combination with GEN (same doses as OVX), or left untreated. Bone mineral density (BMD), bone-alkaline phosphatase (b-ALP), collagen C-telopeptides (CTX), osteoprotegerin (OPG) and soluble receptor activator of NFκB ligand (sRANKL) were assessed. Femurs were excised and tested for breaking strength and histology. Uterine weight was analyzed to assess GEN's estrogenic effects on the SHAM-OVX.The most effective dose of GEN, independent of Ca/D3 supplementation, was 54 mg/day. Higher doses yielded no further improvement in bone biomarkers, histology or strength. Only 1000 mg/day HED of genistein produced statistically significant changes in uterine weight of the SHAM-OVX. This study suggests that 54 mg/day of GEN is the threshold dose for efficacy. In addition, supplemental calcium and vitamin D3, beyond normal dietary intake do not enhance the effects of genistein on improving measures of bone loss. This observation has implications regarding the use of calcium and vitamin D3 supplementation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号