首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   5篇
  国内免费   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   10篇
  2013年   13篇
  2012年   4篇
  2011年   11篇
  2010年   9篇
  2009年   10篇
  2008年   13篇
  2007年   17篇
  2006年   17篇
  2005年   11篇
  2004年   8篇
  2003年   8篇
  2002年   7篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
排序方式: 共有169条查询结果,搜索用时 15 毫秒
11.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane cytokine and a potent inducer of apoptosis. Epidermal growth factor (EGF) signaling is well known to involve in tumor survival and overexpression of EGF receptor (EGF-R) attributes to decreased responsiveness to many available therapies in cancer treatment. We investigated whether EGF-R inhibitors enhance TRAIL-induced apoptosis. We exposed A549 cells to Genistein, PD153035, and PD158780 for 12h and then treated with recombinant TRAIL protein. TRAIL alone induced 25% cell death after a 3-h treatment, but in cells pretreated with EGF-R inhibitors, TRAIL induced cell death to more than 70% after 3h treatment. Genistein enhanced TRAIL-induced apoptosis in a time- and dose-dependent manner. Western blot analyses showed that pretreatment with Genistein down-regulated the protein levels of total Akt and phosphorylated active Akt. Genistein also decreased the protein level of Bcl-XL that is regulated by Akt. These molecules are well characterized to act against induction of apoptotic cell death. Therefore, our data suggest that EGF-R inhibitor may sensitize A549 cells to TRAIL-induced apoptosis by regulating expression of these proteins. EGF-R inhibitors may play an important role in the anti-cancer activity of TRAIL protein, especially in TRAIL-resistant tumors that arise by expressing constitutively active Akt.  相似文献   
12.
Genistein   总被引:15,自引:0,他引:15  
Genistein (4',5,7-trihydroxyisoflavone) is a common precursor in the biosynthesis of antimicrobial phytoalexins and phytoanticipins in legumes, and an important nutraceutical molecule found in soybean seeds. Genistein is a phytoestrogen with a wide variety of pharmacological effects in animal cells, including tyrosine kinase inhibition, and dietary genistein ingestion has been linked, through epidemiological and animal model studies, with a range of potential health beneficial effects. These include chemoprevention of breast and prostate cancers, cardiovascular disease and post-menopausal ailments. In spite of an extensive literature on the effects of dietary genistein, questions still exist as to its potential overall benefits as a component of the human diet. Genistein can be synthesized chemically via the deoxybenzoin or chalcone route. Genistein is synthesized in plants from the flavanone naringenin by a novel ring migration reaction catalyzed by the cytochrome P450 enzyme isoflavone synthase (IFS). IFS genes have recently been cloned from a number of plant species, and production of genistein can be now achieved in non-legumes by recombinant DNA approaches.  相似文献   
13.
Genistein is an isoflavone with potent inhibitory activity on protein tyrosine kinase. Previous studies have shown that genistein has additional effects, among which the direct blocking effects on various ionic channels have recently been disclosed. Using whole-cell voltage clamp and current clamp techniques, we demonstrate that micromolar concentrations of genistein dose-dependently and reversibly inhibit the inward rectifying K(+) current, and depolarize the resting membrane potential, resulting in abnormal automaticity in guinea pig ventricular myocytes. Interestingly, another potent tyrosine kinase inhibitor, tyrphostin 51, did not produce the same inhibitory effect, while the inactive analogue of genistein, daidzein, had a similar blocking effect. We suggest that genistein directly blocks the inward rectifying K(+) current in ventricular myocytes, and one should be cautious of its pro-arrhythmic effect in clinical use.  相似文献   
14.
Genistein affects lipogenesis and lipolysis in isolated rat adipocytes   总被引:2,自引:0,他引:2  
Genistein is a phytoestrogen found in several plants eaten by humans and food-producing animals and exerting a wide spectrum of biological activity. In this experiment, the impact of genistein on lipogenesis and lipolysis was studied in isolated rat adipocytes. Incubation of the cells (106 cells/ml in plastic tubes at 37°C with Krebs-Ringer buffer, 90 min) with genistein (0.01, 0.3, 0.6 and 1 mM) clearly restricted (1 nM) [U-14C]glucose conversion to total lipids in the absence and presence of insulin. When [14C]acetate was used as the substrate for lipogenesis, genistein (0.01, 0.1 and 1 mM) exerted a similar effect. Thus, the anti-lipogenetic action of genistein may be an effect not only of alteration in glucose transport and metabolism, but this phytoestrogen can also restrict the fatty acids synthesis and/or their estrification. Incubation of adipocytes with estradiol at the same concentrations also resulted in restriction of lipogenesis, but the effect was less marked. Genistein (0.1 and 1 mM) augmented basal lipolysis in adipocytes. This process was strongly restricted by insulin (1 μM) and H-89 (an inhibitor of protein kinase A; 50 μM) and seems to be primarily due to the inhibitory action of the phytoestrogen on cAMP phosphodiesterase in adipocytes. Genistein at the smallest concentration (0.01 mM) augmented epinephrine-stimulated (1 μM) lipolysis but failed to potentiate lipolysis induced by forskolin (1 μM) or dibutyryl-cAMP (1 mM). These results suggest genistein action on the lipolytic pathways before activation of adenylate cyclase. The restriction of lipolysis stimulated by several lipolytic agents – epinephrine, forskolin and dibutyryl-cAMP were observed when adipocytes were incubated with genistein at highest concentrations (0.1 and 1 mM). These results prove the inhibitory action of this phyestrogen on the final steps of the lipolytic cascade, i.e. on protein kinase A or hormone sensitive lipase. Estradiol, added to the incubation medium, did not affect lipolysis. It can be concluded that genistein significantly affects lipogenesis and lipolysis in isolated rat adipocytes.  相似文献   
15.
Two electrochemical signals ascribed to xanthine/guanine and hypanthine/adenine in MCF-7 cells were detected at 0.726 and 1.053 V, respectively. Based on the intensity of signals, the genistein-induced proliferation and suppression of MCF-7 cells could be evaluated. The results showed that with the increase of genistein dose at the range of 10−9 to 10−6 M, the two electrochemical signals of MCF-7 cell suspension increased due to the proliferation, whereas the tendency at the high dosage range of more than 10−5 M was decreased. The proliferation and cytotoxicity obtained by the electrochemical method were in agreement with those obtained by cell counting and the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium] method. Thus, the two-signal electrochemical method is an effective way to evaluate the effect of drugs on cell activity based on purine metabolism.  相似文献   
16.
Choi EJ  Kim T  Lee MS 《Life sciences》2007,80(15):1403-1408
We investigated the effects of genistein and genistin on proliferation and apoptosis of human ovarian SK-OV-3 cells and explored the mechanism for these effects. SK-OV-3 cells were treated with genistein and genistin at various concentrations (ranging from 1 to 100 muM) either alone or in combination for 24 and 48 h. Cell proliferation was estimated using an MTT assay, and cell cycle arrest was evaluated using FACS. Caspase-3 activity and annexin-based cell cycle analysis were used as measures of apoptosis. In addition, genistein- and genistin-induced cytotoxicity was determined by measuring release of LDH. Genistein treatment for 24 or 48 h substantially inhibited SK-OV-3 cell proliferation in a dose-dependent manner, and genistin treatment for 48 h also inhibited cell proliferation. Genistein caused cell cycle arrest at G2/M phase in dose- and time-dependent manner, and genistin caused cell cycle arrest not only at G2/M phase but also at G1 phase. Genistein markedly induced apoptosis and significantly increased LDH release, whereas genistin did not affect LDH release. Moreover, exposure to both genistein and genistin in combination for 48 h induced apoptosis without increasing LDH release. Genistein and genistin inhibit cell proliferation by disrupting the cell cycle, which is strongly associated with the arrest induction of either G1 or G2/M phase and may induce apoptosis. Based on our findings, we speculate that both genistein and genistin may prove useful as anticancer drugs and that the combination of genistein and genistin may have further anticancer activity.  相似文献   
17.
Equol production, isoflavone excretion, and the salivary estradiol profile among 36 females, native Irish Caucasian volunteers following ingestion of 200mL soymilk is reported. The soymilk contained daidzein (73+/-6.7mg) and genistein (86+/-10.2mg). Volunteers provided personal and family medical history. Dietary analysis revealed that all volunteers regularly consumed soy-based or soy-supplemented food products. The mean age, mean age at menarche, and body mass index of volunteers were 46.6+/-12.3 years, 13.1 years and 26.1, respectively. The average number of children per volunteer was 2.13. Twelve (34%) of the volunteers were found to be first-degree relatives of breast cancer patients. Following consumption of the soymilk, equol was detected in the urine of 18 (51%) of the volunteers. Mean urinary daidzein and genistein concentrations during the hours following soymilk ingestion were 13.5 and 16.7microg/mg creatinine, respectively, however, some volunteers excreted little (less than 4.0microg/mg) or no isoflavone. Salivary estradiol in most (24) volunteers had decreased from 51.5+/-28.67pmol/L pre-ingestion to 29.75+/-16.13pmol/L 5h after drinking the soymilk. However, the salivary estradiol in 12 subjects (34%) increased from 33.76+/-13.4pmol/L to 137.4+/-65.64pmol/L over the same period. Individuals whose salivary estradiol increased had significantly less children (1.58 (P<0.05)), were more likely to (a) return urine samples with low isoflavone content (50.3% compared to 25%), (b) to be equol producers (67% compared to 41.7%), and (c) to be first-degree relatives of breast cancer patients (41.7% compared to 25%). Volunteers who reported a first-degree link to breast cancer were more likely to have a higher body mass index (29.0 compared to 26.1 (P<0.05)), to be equol producers (75% compared to 51%), and to excrete isoflavones in low quantities only (60% compared to 50%). First-degree relatives also had fewer children (1.75 (P<0.05)). The results indicate a significant, distinctive variation in equol production, isoflavone excretion and salivary estradiol profile among individual volunteers following ingestion of soymilk.  相似文献   
18.
Hydroperoxides, the products of lipoxygenase mediated pathways, play a major role in the manifestation of chronic inflammatory diseases. Soy isoflavones act as antioxidants due to their ability to scavenge free radicals. Isoflavones inhibit the activity of soy lipoxygenase-1 and 5-lipoxygenase, from human polymorph nuclear lymphocyte in a concentration dependent manner. Spectroscopic and enzyme kinetic measurements have helped to understand the nature and mechanism of inhibition. Genistein is the most effective inhibitor of soy lipoxygenase 1 and 5-lipoxygenase with IC(50) values of 107 and 125 microM, respectively. Genistein and daidzein are noncompetitive inhibitors of soy lipoxygenase 1 with inhibition constants, K(i), of 60 and 80 microM, respectively. Electron paramagnetic resonance and spectroscopic studies confirm that isoflavones reduce active state iron to ferrous state and prevent the activation of the resting enzyme. A model for the inhibition of lipoxygenase by isoflavones is suggested.  相似文献   
19.
Genistein is a plant-derived compound possessing well-known preventive activity in breast and prostate cancer, cardiovascular diseases and post-menopausal problems. Lately, the interests in genistein have widened. The studies concerning effects of genistein performed on animals and humans revealed other aspects of its action – the metabolic alterations at the cellular level and in the whole organism. It was shown that genistein decreased body and fat tissue weight gains accompanied by reduced food intake. After ingestion of dietary genistein, the alterations in concentrations of hormones such as: insulin, leptin, thyroid hormones, adrenocorticotropic hormone, cortisol and corticosterone were observed. The changes in lipid parameters – triglycerides and cholesterol were also noticed as a consequence of genistein administration. Moreover, the altered expression of genes engaged in lipid metabolism, disturbed glucose transport into cells, affected lipolysis and lipogenesis and changed ATP synthesis were found as a result of genistein action.  相似文献   
20.
The root tuber peel of Flemingia vestita has been in use in local traditional medicine against intestinal worm infections in Meghalaya (North-East India). In order to evaluate and authenticate the anthelminitc efficacy of the isoflavones of F. vestita, the root peel extract of this putative plant was tested against several helminth parasites, extensively on Rallietina echinobothrida, with respect to different parameters of these parasites. In this paper, we describe various methods to evaluate the anthelmintic efficacy of this medicinal plant with respect to carbohydrate metabolism in R. echinobothrida at paralytic time caused by the isoflavones of F. vestita. To meet the high energy demand by the parasite due to the anthelmintic stress, glucose breakdown follows the PEPCK-malate pathway in the parasite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号