首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1023篇
  免费   101篇
  国内免费   37篇
  2023年   21篇
  2022年   28篇
  2021年   33篇
  2020年   19篇
  2019年   28篇
  2018年   28篇
  2017年   34篇
  2016年   37篇
  2015年   32篇
  2014年   46篇
  2013年   68篇
  2012年   38篇
  2011年   38篇
  2010年   33篇
  2009年   53篇
  2008年   69篇
  2007年   42篇
  2006年   52篇
  2005年   38篇
  2004年   43篇
  2003年   34篇
  2002年   43篇
  2001年   29篇
  2000年   37篇
  1999年   19篇
  1998年   12篇
  1997年   11篇
  1996年   9篇
  1995年   13篇
  1994年   6篇
  1993年   12篇
  1992年   11篇
  1991年   14篇
  1990年   19篇
  1989年   8篇
  1988年   9篇
  1987年   13篇
  1986年   14篇
  1985年   10篇
  1984年   12篇
  1983年   4篇
  1982年   7篇
  1980年   6篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1972年   4篇
排序方式: 共有1161条查询结果,搜索用时 15 毫秒
961.
A diverse group of neurodegenerative diseases are characterized by progressive, age-dependent intracellular formation of misfolded protein aggregates. These include Alzheimer’s disease, Huntington’s disease, Parkinson’s disease and a number of tau-mediated disorders. There is no effective treatment for any of these disorders; currently approved interventions are designed to treat disease symptoms and generally lead to modest modulation of clinical symptoms. None are known to mitigate underlying neuropathologic mechanisms and, thus, it is not unexpected that existing treatments appear ineffective in modulating disease progression. We note that these neurodegenerative disorders all share a common mechanistic theme in that depositions of misfolded protein in the brain is a key molecular feature underlying disease onset and/or progression. While previous studies have identified a number of drugs and nutraceuticals capable of interfering with the formation and/or stability of misfolded protein aggregates, none have been demonstrated to be effective in vivo for treating any of the neurodegenerative disorders. We hereby review accumulating evidence that a select nutraceutical grape-seed polyphenolic extract (GSPE) is effective in vitro and in vivo in mitigating certain misfolded protein-mediated neuropathologic and clinical phenotypes. We will also review evidence implicating bioavailability of GSPE components in the brain and the tolerability as well as safety of GSPE in animal models and in humans. Collectively, available information supports continued development of the GSPE for treating a variety of neurodegenerative disorders involving misfolded protein-mediated neuropathologic mechanisms.  相似文献   
962.
《Autophagy》2013,9(4):609-622
More than 30 neurodegenerative diseases including Alzheimer disease (AD), frontotemporal lobe dementia (FTD), and some forms of Parkinson disease (PD) are characterized by the accumulation of an aggregated form of the microtubule-binding protein tau in neurites and as intracellular lesions called neurofibrillary tangles. Diseases with abnormal tau as part of the pathology are collectively known as the tauopathies. Methylthioninium chloride, also known as methylene blue (MB), has been shown to reduce tau levels in vitro and in vivo and several different mechanisms of action have been proposed. Herein we demonstrate that autophagy is a novel mechanism by which MB can reduce tau levels. Incubation with nanomolar concentrations of MB was sufficient to significantly reduce levels of tau both in organotypic brain slice cultures from a mouse model of FTD, and in cell models. Concomitantly, MB treatment altered the levels of LC3-II, cathepsin D, BECN1, and p62 suggesting that it was a potent inducer of autophagy. Further analysis of the signaling pathways induced by MB suggested a mode of action similar to rapamycin. Results were recapitulated in a transgenic mouse model of tauopathy administered MB orally at three different doses for two weeks. These data support the use of this drug as a therapeutic agent in neurodegenerative diseases.  相似文献   
963.
Estradiol influences the level and distribution of daily activity, the duration of the free-running period, and the behavioral phase response to light pulses. However, the mechanisms by which estradiol regulates daily and circadian rhythms are not fully understood. We tested the hypothesis that estrogens modulate daily activity patterns via both classical and “non-classical” actions at the estrogen receptor subtype 1 (ESR1). We used female transgenic mice with mutations in their estrogen response pathways; ESR1 knock-out (ERKO) mice and “non-classical” estrogen receptor knock-in (NERKI) mice. NERKI mice have an ESR1 receptor with a mutation in the estrogen-response-element binding domain, allowing only actions via “non-classical” genomic and second messenger pathways. Ovariectomized female NERKI, ERKO, and wildtype (WT) mice were given a subcutaneous capsule with low- or high-dose estradiol and compared with counterparts with no hormone replacement. We measured wheel-running activity in a light:dark cycle and constant darkness, and the behavioral phase response to light pulses given at different points during the subjective day and night. Estradiol increased average daily wheel-running, consolidated activity to the dark phase, and shortened the endogenous period in WT, but not NERKI and ERKO mice. The timing of activity onset during entrainment was advanced in all estradiol-treated animals regardless of genotype suggesting an ESR1-independent mechanism. We propose that estradiol modifies period, activity level, and distribution of activity via classical actions of ESR1 whereas an ESR1 independent mechanism regulates the phase of rhythms.  相似文献   
964.
The tau protein belongs to the category of intrinsically disordered proteins, which in their native state do not have an average stable structure and fluctuate between many conformations. In its physiological state, tau helps nucleating and stabilising the microtubules in the axons of the neurons. On the other hand, the same tau is involved in the development of Alzheimer disease, when it aggregates in paired helical filaments forming fibrils, which form insoluble tangles. The beginning of the pathological aggregation of tau has been attributed to a local transition of protein portions from random coil to a β-sheet. These structures would very likely be transient; therefore, we performed a molecular dynamics simulation of tau to gather information on the existence of segments of tau endowed with a secondary structure. We combined the results of our simulation with small-angle X-ray scattering experimental data to extract from the dynamics a set of most probable conformations of tau. The analysis of these conformations highlights the presence of transient secondary structures such as turns, β-bridges, β-sheets and α-helices. It also shows that a large segment of the N-terminal region is found near the repeats domain in a globular-like shape.  相似文献   
965.
An intrinsically disordered protein (IDP) does not have a definite 3D structure, and because of its highly flexible nature it evolves dynamically in very large and diverse regions of the phase space. A standard molecular dynamics run can sample only a limited region of the latter; even though this kind of simulation may be effective in sampling local temporary secondary structures, it is not sufficient to highlight properties that require a larger sampling of the phase space to be detected, like transient tertiary structures. But if the structure of an IDP is dynamically evolved using metadynamics (an algorithm that keeps track of the regions of the phase space already sampled), the system can be forced to wander in a much larger region of the phase space. We have applied this procedure to the simulation of tau, one of the largest totally disordered proteins. Combining the results of the simulation with small-angle X-ray scattering yields a significant improvement in the sampling of the phase space in comparison with standard molecular dynamics, and provides evidence of extended hairpin- and paperclip-like transient tertiary structures of the molecule. The more persistent tertiary pattern is a hairpin folding encompassing part of the N-terminal, the proline-rich domain, the former repeat and a functionally relevant part of the second repeat.  相似文献   
966.
The purpose of this study is to present a general mathematical framework to compute a set of feedback matrices which stabilize an unstable nonlinear anthropomorphic musculoskeletal dynamic model. This method is activity specific and involves four fundamental stages. First, from muscle activation data (input) and motion degrees-of-freedom (output) a dynamic experimental model is obtained using system identification schemes. Second, a nonlinear musculoskeletal dynamic model which contains the same number of muscles and degrees-of-freedom and best represents the activity being considered is proposed. Third, the nonlinear musculoskeletal model (anthropomorphic model) is replaced by a family of linear systems, parameterized by the same set of input/ output data (nominal points) used in the identification of the experimental model. Finally, a set of stabilizing output feedback matrices, parameterized again by the same set of nominal points, is computed such that when combined with the anthropomorphic model, the combined system resembles the structural form of the experimental model. The method is illustrated in regard to the human squat activity.  相似文献   
967.
Like patients with prion disease, Alzheimer patients suffer from a fatal, progressive form of dementia. There is growing evidence that amyloid-β (Aβ) aggregates may be transmissible similar to prions, at least under extreme experimental conditions. However, unlike mice infected with prion protein (PrP) prions, those inoculated with Aβ do not die. The transmission of Aβ and PrP thus differs conspicuously in the neurological effects they induce in their hosts, the difference being no less than a matter of life and death. Far from being a mere academic nuance, this distinction between Aβ and PrP begs the crucial questions of what, exactly, controls prion toxicity and how prion toxicity relates to prion infectivity.  相似文献   
968.
The role of the VQIVYK peptide in tau protein phosphorylation   总被引:1,自引:0,他引:1  
Although it remains unclear whether they are related to one another, tau aggregation and phosphorylation are the main pathological hallmarks of the neuronal disorders known as tauopathies. The capacity to aggregate is impaired in a variant of the tau 3R isoform that lacks residues 306–311 (nomenclature for the largest CNS tau isoform) and hence, we have taken advantage of this feature to study how phosphorylation and aggregation may be related as well as the role of this six amino acid peptide (VQIVYK). Through these analyses, we found that the phosphorylation of the tau variant was higher than that of the complete tau protein and that not only the deletion of these residues, but also the interaction of these residues, in tau 3R, with thioflavin-S augmented tau phosphorylation by glycogen synthase kinase 3. In addition, the binding of the peptide containing the residues 306–311 to the whole tau protein provoked an increase in tau phosphorylation. This observation could be physiologically relevant as may suggest that tau–tau interactions, through those residues, facilitate tau phosphorylation. In summary, our data indicate that deletion of residues VQIVYK, in tau protein produces an increase in tau phosphorylation, without tau aggregation, because the VQIVYK peptide, that favors aggregation, is missing. On the other hand, when the whole tau protein interacts with thioflavin-S or the peptide VQIVYK, an increase in both aggregation and phosphorylation occurs.  相似文献   
969.
Protein aggregation and amyloid accumulation in different tissues are associated with cellular dysfunction and toxicity in important human pathologies, including Alzheimer's disease and various forms of systemic amyloidosis. Soluble oligomers formed at the early stages of protein aggregation have been increasingly recognized as the main toxic species in amyloid diseases. To gain insight into the mechanisms of toxicity instigated by soluble protein oligomers, we have investigated the aggregation of hen egg white lysozyme (HEWL), a normally harmless protein. HEWL initially aggregates into beta-sheet rich, roughly spherical oligomers which appear to convert with time into protofibrils and mature amyloid fibrils. HEWL oligomers are potently neurotoxic to rat cortical neurons in culture, while mature amyloid fibrils are little or non-toxic. Interestingly, when added to cortical neuronal cultures HEWL oligomers induce tau hyperphosphorylation at epitopes that are characteristically phosphorylated in neurons exposed to soluble oligomers of the amyloid-beta peptide. Furthermore, injection of HEWL oligomers in the cerebral cortices of adult rats induces extensive neurodegeneration in different brain areas. These results show that soluble oligomers from a non-disease related protein can mimic specific neuronal pathologies thought to be induced by soluble amyloid-beta peptide oligomers in Alzheimer's disease and support the notion that amyloid oligomers from different proteins may share common structural determinants that would explain their generic cytotoxicities.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号