首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1023篇
  免费   101篇
  国内免费   37篇
  2023年   21篇
  2022年   28篇
  2021年   33篇
  2020年   19篇
  2019年   28篇
  2018年   28篇
  2017年   34篇
  2016年   37篇
  2015年   32篇
  2014年   46篇
  2013年   68篇
  2012年   38篇
  2011年   38篇
  2010年   33篇
  2009年   53篇
  2008年   69篇
  2007年   42篇
  2006年   52篇
  2005年   38篇
  2004年   43篇
  2003年   34篇
  2002年   43篇
  2001年   29篇
  2000年   37篇
  1999年   19篇
  1998年   12篇
  1997年   11篇
  1996年   9篇
  1995年   13篇
  1994年   6篇
  1993年   12篇
  1992年   11篇
  1991年   14篇
  1990年   19篇
  1989年   8篇
  1988年   9篇
  1987年   13篇
  1986年   14篇
  1985年   10篇
  1984年   12篇
  1983年   4篇
  1982年   7篇
  1980年   6篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1972年   4篇
排序方式: 共有1161条查询结果,搜索用时 15 毫秒
101.
Estimating survival under a dependent truncation   总被引:3,自引:0,他引:3  
  相似文献   
102.
Wood SN 《Biometrics》2006,62(4):1025-1036
A general method for constructing low-rank tensor product smooths for use as components of generalized additive models or generalized additive mixed models is presented. A penalized regression approach is adopted in which tensor product smooths of several variables are constructed from smooths of each variable separately, these "marginal" smooths being represented using a low-rank basis with an associated quadratic wiggliness penalty. The smooths offer several advantages: (i) they have one wiggliness penalty per covariate and are hence invariant to linear rescaling of covariates, making them useful when there is no "natural" way to scale covariates relative to each other; (ii) they have a useful tuneable range of smoothness, unlike single-penalty tensor product smooths that are scale invariant; (iii) the relatively low rank of the smooths means that they are computationally efficient; (iv) the penalties on the smooths are easily interpretable in terms of function shape; (v) the smooths can be generated completely automatically from any marginal smoothing bases and associated quadratic penalties, giving the modeler considerable flexibility to choose the basis penalty combination most appropriate to each modeling task; and (vi) the smooths can easily be written as components of a standard linear or generalized linear mixed model, allowing them to be used as components of the rich family of such models implemented in standard software, and to take advantage of the efficient and stable computational methods that have been developed for such models. A small simulation study shows that the methods can compare favorably with recently developed smoothing spline ANOVA methods.  相似文献   
103.
The precise molecular mechanisms by which cells transduce a mechanical stimulus into an intracellular biochemical response have not yet been established. Here, we show for the first time that the fluorescence emission of an environment-sensitive membrane probe Laurdan is modulated by mechanical strain of the lipid bilayer membrane. We have measured fluorescence emission of Laurdan in phospholipid vesicles of 30, 50, and 100 nm diameter to show that osmotically induced membrane tension leads to an increase in polarity (hydration depth) of the phospholipid bilayer interior. Our data indicate that the general polarization of Laurdan emission is linearly dependent on membrane tension. We also show that higher membrane curvature leads to higher hydration levels. We anticipate that the proposed method will facilitate future studies of mechanically induced changes in physical properties of lipid bilayer environment both in vitro and in vivo.  相似文献   
104.
105.
To understand the role of sphingomyelinase (SMase) in the function of biological membranes, we have investigated the effect of conversion of sphingomyelin (SM) to ceramide (Cer) on the assembly of domains in giant unilamellar vesicles (GUVs). The GUVs were prepared from mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), N-palmitoly-d-erythro-sphingosine (C16Cer), N-palmitoyl-d-erythro-sphingosylphosphorylcholine (C16SM) and cholesterol. The amounts of DOPC, sum of C16Cer and C16SM, and cholesterol were kept constant (the ratio of these four lipids is shown as 1:X:1-X:1 (molar ratio), i.e., X is C16Cer/(C16Cer + C16SM)). Shape and distribution of domains formed in the GUVs were monitored by a fluorescent lipid, Texas Red 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (0.1 mol%). In GUVs containing low C16Cer (X = 0 and 0.25), round-shaped domains labeled by the fluorescent lipid were present, suggesting coexistence of liquid-ordered and disordered domains. In GUVs containing intermediate Cer concentration (X = 0.5), the fluorescent domain covered most of GUV surface, which was surrounded by gel-like domains. Differential scanning calorimetry of multilamellar vesicles prepared in the presence of higher Cer concentration (X ≥ 0.5) suggested existence of a Cer-enriched gel phase. Video microscopy showed that the enzymatic conversion of SM to Cer caused rapid change in the domain structure: several minutes after the SMase addition, the fluorescent region spread over the GUV surface, within which regions with darker contrast existed. Image-based measurement of generalized polarization (GP) of 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan), which is related to the acyl chain ordering of the lipids, was performed. Before the SMase treatment domains with high (0.65) and low (below 0.4) GP values coexisted, presumably reflecting the liquid-ordered and disordered domains; after the SMase treatment regions with intermediate GP values (0.5) and smaller regions with higher GP values (0.65) were present. Generation of Cer thus caused a phase transition from liquid-ordered and disordered phases to a gel and liquid phase.  相似文献   
106.
Distinguishing the roles of propagule limitation and niche requirements in controlling plant species distributions is important for understanding community structure, invasion, and restoration. We used species distribution models based on plant and environmental survey data to assess the strength of species' affinities for particular environmental conditions. We hypothesized that species with statistically detectable environmental requirements were primarily niche-limited, while species with weak habitat affinities were primarily propagule-limited. We tested this hypothesis via a seeding experiment in which we compared species' reproductive fitness in occupied and unoccupied sites. Species that appeared to be niche-limited based on distribution models had lower fitness when planted in unoccupied sites, while species that models suggested were propagule-limited had equivalent fitness when planted in occupied and unoccupied sites. Our results demonstrate that within a single community, both species limited primarily by niche availability or primarily by propagule availability can be identified using observational data.  相似文献   
107.
Abnormal cell cycle events are increasingly becoming important attributes of neurodegenerative pathology. Pin1 is a crucial target of neurodegeneration in relation to its functions regarding these abnormal cell cycle events in neurons. Pin1 is majorly involved in many aspects of cell cycle regulation and it has also been suggested to have a neuroprotective function against neurodegenerative pathologies. Oxidative dysregulation of Pin1 affects not only normal tau regulation, eventually causing tangle formation, but also cell cycle regulation in neurons. Presence of cell cycle proteins has been shown in many neurodegenerative diseases. Importantly, many of these proteins have physical interactions with Pin1. Hence, understanding Pin1's role in abnormal cell cycle re-entry is critical in terms of finding new approaches for the future therapeutic options treating neurodegenerative pathologies. Here, we show that inhibition of Pin1 by its selective inhibitor juglone leads to up-regulation of cyclinD1, phospho-tau, and caspase 3, producing apoptosis in cultured rat hippocampal neurons. We also observed axonal retraction with a change in sub-cellular localizations of cyclins. Therefore, Pin1 dysregulation, in relation to its role in cell cycle regulation in neurons, may have profound effects in the progression of neurodegenerative pathology, making it a possible crucial target behind many neurodegenerative diseases.  相似文献   
108.
Caspase cleavage of amyloid precursor protein (APP) has been reported to be important in amyloid beta protein (Aβ)‐mediated neurotoxicity. However, the underlying mechanisms are not clearly understood. In this study, we explored the effect of caspase cleavage of APP on tau phosphorylation in relation to Aβ. We found that Asp664 cleavage of APP increased tau phosphorylation at Thr212 and Ser262 in N2A cells and primary cultured hippocampal neurons. Compared with wild‐type APP, protein phosphatase 2A (PP2A) activity was significantly increased when Asp664 cleavage was blocked by the D664A point mutation. Furthermore, we found that over‐expression of C31 reduced PP2A activity. C31 binds directly to the PP2A catalytic subunit, through the asparagine, proline, threonine, tyrosine (NPTY) motif, which is essential for C31‐induced tau hyperphosphorylation. However, it appears that the other fragment produced by Asp664 cleavage, Jcasp, modulates neither PP2A activity nor tau hyperphosphorylation. Asp664 cleavage and accompanying tau hyperphosphorylation were remarkably diminished by blockage of Aβ production using a γ‐secretase inhibitor. Taken together, our results suggest that Asp664 cleavage of APP leads to tau hyperphosphorylation at specific epitopes by modulating PP2A activity as a downstream of Aβ. Direct binding of C31 to PP2A through the C31‐NPTY domain was identified as a mechanism underlying this effect.  相似文献   
109.
The mediatory role of kinins in both acute and chronic inflammation within nervous tissues has been widely described. Bradykinin, the major representative of these bioactive peptides, is one of a few mediators of inflammation that directly stimulates afferent nerves due to the broad expression of specific kinin receptors in cell types in these tissues. Moreover, kinins may be delivered to a site of injury not only after their production at the endothelium surface but also following their local production through the enzymatic degradation of kininogens at the surface of nerve cells. A strong correlation between inflammatory processes and neurodegeneration has been established. The activation of nerve cells, particularly microglia, in response to injury, trauma or infection initiates a number of reactions in the neuronal neighborhood that can lead to cell death after the prolonged action of inflammatory substances. In recent years, there has been a growing interest in the effects of kinins on neuronal destruction. In these studies, the overexpression of proteins involved in kinin generation or of kinin receptors has been observed in several neurologic disorders including neurodegenerative diseases such Alzheimer's disease and multiple sclerosis as well as disorders associated with a deficiency in cell communication such as epilepsy. This review is focused on recent findings that provide reliable evidence of the mediatory role of kinins in the inflammatory responses associated with different neurological disorders. A deeper understanding of the role of kinins in neurodegenerative diseases is likely to promote the future development of new therapeutic strategies for the control of these disorders. An example of this could be the prospective use of kinin receptor antagonists.  相似文献   
110.
The most common neurodegenerative diseases are characterized by the accumulation of misfolded proteins. Tauopathies, which include Alzheimer disease, progressive supranuclear palsy, corticobasal degeneration, Pick disease and cases of frontotemporal dementia and parkinsonism linked to chromosome 17, are characterized by the accumulation of hyperphosphorylated and filamentous MAPT/tau protein. The pathological mechanisms involved in MAPT protein accumulation are not well understood, but a possible impairment of protein degradation pathways has been suggested. We investigated the effects of autophagy stimulation on MAPT pathology in a model tauopathy, the human mutant P301S MAPT transgenic mouse line. In the brain of the trehalose-treated mutant mice, autophagy is activated and a reduced number of neurons containing MAPT inclusions, as well as a decreased amount of insoluble MAPT, are observed. The improvement of MAPT pathology is associated with increased nerve cell survival. Moreover, MAPT inclusions colocalize with SQSTM1/p62- and LC3-positive puncta, suggesting the colocalization of MAPT aggregates with autophagic vacuoles. Autophagy is not activated in the spinal cord of the human P301S MAPT transgenic mice and neuronal survival, as well as MAPT pathology, is unaffected. This study supports a role for autophagy stimulation in the degradation of MAPT aggregates and opens new perspectives for the investigation of autophagy as a pathological mechanism involved in neurodegenerative diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号