首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7724篇
  免费   538篇
  国内免费   435篇
  2024年   10篇
  2023年   99篇
  2022年   118篇
  2021年   136篇
  2020年   169篇
  2019年   226篇
  2018年   225篇
  2017年   183篇
  2016年   191篇
  2015年   207篇
  2014年   333篇
  2013年   593篇
  2012年   290篇
  2011年   392篇
  2010年   301篇
  2009年   401篇
  2008年   436篇
  2007年   419篇
  2006年   482篇
  2005年   357篇
  2004年   325篇
  2003年   321篇
  2002年   298篇
  2001年   221篇
  2000年   171篇
  1999年   185篇
  1998年   167篇
  1997年   181篇
  1996年   112篇
  1995年   156篇
  1994年   113篇
  1993年   90篇
  1992年   103篇
  1991年   77篇
  1990年   74篇
  1989年   77篇
  1988年   54篇
  1987年   44篇
  1986年   30篇
  1985年   64篇
  1984年   83篇
  1983年   54篇
  1982年   50篇
  1981年   27篇
  1980年   15篇
  1979年   13篇
  1978年   6篇
  1977年   7篇
  1974年   5篇
  1973年   3篇
排序方式: 共有8697条查询结果,搜索用时 171 毫秒
971.
972.
In recent years, cell-penetrating peptides have proven to be an efficient intracellular delivery system. The mechanism for CPP internalisation, which first involves interaction with the extracellular matrix, is followed in most cases by endocytosis and finally, depending on the type of endocytosis, an intracellular fate is reached. Delivery of cargo attached to a CPP requires endosomal release, for which different methods have recently been proposed. Positively charged amino acids, hydrophobicity and/or amphipathicity are common to CPPs. Moreover, some CPPs can self-assemble. Herein is discussed the role of self assembly in the cellular uptake of CPPs. Sweet Arrow Peptide (SAP) CPP has been shown to aggregate by CD and TEM (freeze-fixation/freeze-drying), although the internalised species have yet to be identified as either the monomer or an aggregate.  相似文献   
973.
The mode of action of antimicrobial peptides (AMPs) in disrupting cell membrane bilayers is of fundamental importance in understanding the efficiency of different AMPs, which is crucial to design antibiotics with improved properties. Recent developments in the field of sum frequency generation (SFG) vibrational spectroscopy have made it a powerful and unique biophysical technique in investigating the interactions between AMPs and a single substrate supported planar lipid bilayer. We will review some of the recent progress in applying SFG to study membrane lipid bilayers and discuss how SFG can provide novel information such as real-time bilayer structure change and AMP orientation during AMP-lipid bilayer interactions in a very biologically relevant manner. Several examples of applying SFG to monitor such interactions between AMPs and a dipalmitoyl phosphatidylglycerol (DPPG) bilayer are presented. Different modes of actions are observed for melittin, tachyplesin I, d-magainin 2, MSI-843, and a synthetic antibacterial oligomer, demonstrating that SFG is very effective in the study of AMPs and AMP-lipid bilayer interactions.  相似文献   
974.
We have investigated the interactions between two carrier peptides and model membrane systems as well as the conformational consequences of these interactions. Studies performed with lipid monolayers at the air-water interface have enabled identification of the nature of the lipid-peptide interactions and characterization of the influence of phospholipids on the ability of these peptides to penetrate into lipidic media. Penetration experiments reveal that both peptides interact strongly with phospholipids. Conformational investigations indicate that the lipid-peptide interaction govern the conformational state of the peptides. Based on the ability of both peptides to promote ion permeabilization of both natural and artificial membranes, we propose a model illustrating the translocation process. For MPG, it is based on the formation of a β-barrel pore-like structure, while for Pep-1, it is based on association of helices.  相似文献   
975.
Many promising therapeutics are currently awaiting their clinical application. Due to their low capability of cell membrane crossing, these compounds do not reach their site of action. One way to overcome this problem might be the fusion of these agents to cell-penetrating peptides (CPP), which are able to shuttle various cargoes across cellular membranes. One disadvantage in using CPP in drug delivery is their low metabolic stability. The aim of our work was to increase the proteolytic resistance of the CPP hCT(9-32), a truncated C-terminal fragment of human calcitonin. Thus, we synthesised six modified N-terminally carboxyfluorescein labelled hCT(9-32) derivatives by replacing positions 12 and/or 16 of hCT(9-32) with either N-methylphenylalanine or d-phenylalanine, respectively. By using confocal laser scanning microscopy we showed that the modifications did neither affect the peptide internalisation efficiency in HeLa nor HEK 293T cells. The metabolic stability of the peptides was investigated in human blood plasma and HEK 293T cell culture supernatant. To analyse the degradation patterns, we used RP-HPLC and MALDI-TOF mass spectrometry. However, we found for all of the new derivatives high metabolic stabilities. In blood plasma, the half-lives for five of the six peptides increased compared to unmodified hCT(9-32). The degradation patterns showed a distinct stabilisation in the N-terminal part of the modified peptides, in the C-terminal part, we found some cleavage to a minor extent. Furthermore, we studied the conformation of the peptides by CD spectroscopy and demonstrated that they possess no cell toxicity. Since our metabolically more stable compounds are still able to pass the cell membrane they provide powerful tools as drug delivery vectors.  相似文献   
976.
Antimicrobial peptides encompass a number of different classes, including those that are rich in a particular amino acid. An important subset are peptides rich in Arg and Trp residues, such as indolicidin and tritrpticin, that have broad and potent antimicrobial activity. The importance of these two amino acids for antimicrobial activity was highlighted through the screening of a complete combinatorial library of hexapeptides. These residues possess some crucial chemical properties that make them suitable components of antimicrobial peptides. Trp has a distinct preference for the interfacial region of lipid bilayers, while Arg residues endow the peptides with cationic charges and hydrogen bonding properties necessary for interaction with the abundant anionic components of bacterial membranes. In combination, these two residues are capable of participating in cation-π interactions, thereby facilitating enhanced peptide-membrane interactions. Trp sidechains are also implicated in peptide and protein folding in aqueous solution, where they contribute by maintaining native and nonnative hydrophobic contacts. This has been observed for the antimicrobial peptide from human lactoferrin, possibly restraining the peptide structure in a suitable conformation to interact with the bacterial membrane. These unique properties make the Arg- and Trp-rich antimicrobial peptides highly active even at very short peptide lengths. Moreover, they lead to structures for membrane-mimetic bound peptides that go far beyond regular α-helices and β-sheet structures. In this review, the structures of a number of different Trp- and Arg-rich antimicrobial peptides are examined and some of the major mechanistic studies are presented.  相似文献   
977.
The ability to selectively target the harmful microbial membrane over that of the host cell is one of the most important characteristics of the antimicrobial peptides (AMPs). This selectivity strongly depends on the chemical and structural properties of the lipids that make up the cell membrane. A systematic study of the initial membrane selectivity of protegrin-1 (PG-1), a β-sheet AMP, was performed using Langmuir monolayers. Constant pressure insertion assay was used to quantify the amount of PG-1 insertion and fluorescence microscopy was employed to observe the effect of PG-1 on lipid ordering. Charge and packing properties of the monolayer were altered by using lipids with different head groups, substituting saturated with unsaturated lipid tail group(s) and incorporating spacer molecules. PG-1 inserted most readily into anionic films composed of phosphatidylglycerol (PG) and lipid A, consistent with its high selectivity for microbial membranes. It also discriminated between zwitteranionic phospholipids, inserting more readily into phosphatidylcholine (PC) monolayers than those composed of phosphatidylethanolamine, potentially explaining why PG-1 is hemolytic for PC-rich human erythrocytes and not for the PE-rich erythrocytes of ruminants. Increased packing density of the monolayer by increased surface pressure, increased tail group saturation or incorporation of dihydrocholesterol diminishes the insertion of PG-1. Fluorescence microscopy shows that lipid packing is disordered upon PG-1 insertion. However, the presence of PG-1 can still affect lipid morphology even with no observed PG-1 insertion. These results show the important role that lipid composition of the cell membrane plays in the activity of AMPs.  相似文献   
978.
Aurein 1.2 is an antimicrobial and anticancer peptide isolated from an Australian frog. To improve our understanding of the mechanism of action, two series of peptides were designed. The first series includes the N-terminal membrane anchor of bacterial glucose-specific enzyme IIA, aurein 1.2, and a newly identified aurein 1.2 analog from human LL-37 (LLAA). The order of antibacterial activity is LLAA > aurein 1.2 >> the membrane anchor (inactive). The structure of LLAA in detergent micelles was determined by 1H NMR spectroscopy, including structural refinement by natural abundance 13Cα, 13Cβ, and 15N chemical shifts. The hydrophobic surface area of the 3D structure is related to the retention time of the peptide on a reverse-phase HPLC column. The higher activity of LLAA compared to aurein 1.2 was attributed to additional cationic residues that enhance the membrane perturbation potential. The second peptide series was created by changing the C-terminal phenylalanine (F13) of aurein 1.2 to either phenylglycine or tryptophan. A closer or further location of the aromatic rings to the peptide backbone in the mutants relative to F13 is proposed to cause a drop in activity. Phenylglycine with unique chemical shifts may be a useful NMR probe for structure-activity relationship studies of antimicrobial peptides. To facilitate potential future use for NMR studies, random-coil chemical shifts for phenylglycine (X) were measured using the synthetic peptide GGXGG. Aromatic rings of phenylalanines in all the peptides penetrated 2-5 Å below the lipid head group and are essential for membrane targeting as illustrated by intermolecular peptide-lipid NOE patterns.  相似文献   
979.
Protein expression and secretion in insect cells have been widely studied in the baculovirus-infected insect cell system. In directly transfected insect cells only intracellular expression and purification of recombinant proteins have been studied in detail. To examine multiple recombinant protein variants, easy and fast expression and a purification screening system are required. The aim of this study was to establish an effective and rapid secretion system for human azurocidin using directly transfected insect cells. We also constructed and tested expression vectors possessing heterologous signal peptides derived from human azurocidin, yellow lupin diphosphonucleotide phosphatase/phosphodiesterase (PPD1), and papaya papain IV to secrete yellow lupin and red kidney bean purple acid phosphatases, PPD1, and papain IV. Our results demonstrate that the secretion vectors used here can direct recombinant proteins to the culture medium very effectively, allowing their simple purification on a small/medium scale. Based on secretion and activity analyses it seems that the azurocidin signal peptide is one of the most potent secretion signals.  相似文献   
980.
We have investigated the interactions between synthetic amphipathic peptides and zwitterionic model membranes. Peptides with 14 and 21 amino acids composed of leucines and phenylalanines modified by the addition of crown ethers have been synthesized. The 14-mer and 21-mer peptides both possess a helical amphipathic structure as revealed by circular dichroism. To shed light on their mechanism of membrane interaction, different complementary biophysical techniques have been used such as circular dichroism, fluorescence, membrane conductivity measurement and NMR spectroscopy. Results obtained by these different techniques show that the 14-mer peptide is a membrane perturbator that facilitate the leakage of species such as calcein and Na ions, while the 21-mer peptide acts as an ion channel. 31P solid-state NMR experiments on multilamellar vesicles reveal that the dynamics and/or orientation of the polar headgroups are greatly affected by the presence of the peptides. Similar results have also been obtained in mechanically oriented DLPC and DMPC bilayers where different acyl chain lengths seem to play a role in the interaction. On the other hand, 2H NMR experiments on multilamellar vesicles demonstrate that the acyl chain order is affected differently by the two peptides. Based on these studies, mechanisms of action are proposed for the 14-mer and 21-mer peptides with zwitterionic membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号