首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2151篇
  免费   305篇
  国内免费   243篇
  2699篇
  2024年   8篇
  2023年   69篇
  2022年   72篇
  2021年   125篇
  2020年   123篇
  2019年   156篇
  2018年   128篇
  2017年   91篇
  2016年   88篇
  2015年   113篇
  2014年   178篇
  2013年   179篇
  2012年   146篇
  2011年   129篇
  2010年   93篇
  2009年   103篇
  2008年   97篇
  2007年   86篇
  2006年   84篇
  2005年   76篇
  2004年   69篇
  2003年   54篇
  2002年   46篇
  2001年   30篇
  2000年   35篇
  1999年   27篇
  1998年   28篇
  1997年   25篇
  1996年   20篇
  1995年   23篇
  1994年   21篇
  1993年   15篇
  1992年   15篇
  1991年   12篇
  1990年   9篇
  1989年   11篇
  1988年   15篇
  1987年   10篇
  1986年   7篇
  1985年   13篇
  1984年   14篇
  1983年   10篇
  1982年   15篇
  1981年   9篇
  1980年   4篇
  1979年   10篇
  1976年   2篇
  1973年   2篇
  1972年   2篇
  1958年   1篇
排序方式: 共有2699条查询结果,搜索用时 15 毫秒
31.
The interaction of the isolated human plasminogen kringle 4 with the four -amino acid ligands -aminocaproic acid (ACA), N-acetyl-l-lysine (AcLys), trans-aminomethyl(cyclohexane)carboxylic acid (AMCHA) and p-benzylaminesulfonic acid (BASA) has been further characterized by 1H-NMR spectroscopy at 300 and 600 MHz. Pronounced high-field shifts, reaching 3 ppm, are observed for AMCHA resonances upon binding to kringle 4, which underscores the relevance of ligand lipophilic interactions with aromatic side chains at the binding site. Ligand titration curves for the nine His and Trp singlets found in the kringle 4 aromatic spectrum reveal a striking uniformity in the kringle response to the various ligands. The average binding curves exhibit a clear Langmuir absorption isotherm saturation profile and the data were analyzed under the assumption of one (high affinity) binding site per kringle. Equilibrium association constants (K a ) and first order dissociation rate constants (k off) were derived from linearized expressions of the Langmuir isotherm and of the spectral line-shapes, respectively. The results for the four ligands, at 295 K, pH* 7.2, indicate that: (a) AMCHA exhibits the strongest binding (K a =159 mM -1) and ACA the weakest (K a =21 mM –1) with AcLys and BASA falling in between; (b) ACA dissociates readily (k off = 5.3 × 103 s–1) and AMCHA associates the fastest (k off = 2.0 × 108 M –1 s–1) while the kinetics for BASA exchange is relatively slow (k off = 0.8 × 103 s–1, k on = 0.6 × 108 M –1s–1); (c) the ligand-binding kinetics is close to diffussion-controlled.Abbreviations ACA -aminocaproic acid - AcLys N-acetyl-l-lysine - AMCHA t-aminomethyl(cyclohexane)carboxylic acid - BASA p-benzylaminesulfonic acid - K4 kringle 4 - NOE nuclear Overhauser effect - ppm parts-per-million - pH* glass electrode pH reading uncorrected for deuterium isotope effects - K a ligand-kringle 4 equilibrium association constant - k off ligand-kringle 4 dissociation rate constant - k on ligand-kringle 4 association rate constant  相似文献   
32.
33.
SARS-CoV M gene fragment was cloned and expressed as a recombinant protein fused with a V5 tag at the C-terminus in Vero E6 cells. In addition to un-glycosylated and glycosylated proteins, one product with smaller size initiated in-frame from the third Met residues probably through ribosomal re-initiation was also detected. Translation initiated in-frame from the third Met is unusual since the sequence around the first Met of SARS-CoV M protein contains the optimal consensus Kozak sequence. The function of this smaller translated product awaits further investigation. Similar to other N-glycosylated proteins, glycosylation of SARS-CoV M protein was occurred co-translationally in the presence of microsomes. The SARS-CoV M protein is predicted as a triple-spanning membrane protein lack of a conventional signal peptide. The second and third trans-membrane regions (a.a. 46–68 and 78–100) are predicted to be the primary type helices, which will be able to penetrate into membrane by themselves, while the first trans-membrane region (a.a. 14–36) is predicted to be the secondary type helix, which is considered to be stabilized by the interaction with other trans-membrane segments. As expected, the second and third trans-membrane regions were able to insert a cytoplasmic protein into the endoplasmic reticulum membrane more efficiently than the first one. These results should be important for the study of SARS-CoV morphogenesis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
34.
35.
Invasive species can encounter environments different from their source populations, which may trigger rapid adaptive changes after introduction (niche shift hypothesis). To test this hypothesis, we investigated whether postintroduction evolution is correlated with contrasting environmental conditions between the European invasive and source ranges in the Asian tiger mosquito Aedes albopictus. The comparison of environmental niches occupied in European and source population ranges revealed more than 96% overlap between invasive and source niches, supporting niche conservatism. However, we found evidence for postintroduction genetic evolution by reanalyzing a published ddRADseq genomic dataset from 90 European invasive populations using genotype–environment association (GEA) methods and generalized dissimilarity modeling (GDM). Three loci, among which a putative heat‐shock protein, exhibited significant allelic turnover along the gradient of winter precipitation that could be associated with ongoing range expansion. Wing morphometric traits weakly correlated with environmental gradients within Europe, but wing size differed between invasive and source populations located in different climatic areas. Niche similarities between source and invasive ranges might have facilitated the establishment of populations. Nonetheless, we found evidence for environmental‐induced adaptive changes after introduction. The ability to rapidly evolve observed in invasive populations (genetic shift) together with a large proportion of unfilled potential suitable areas (80%) pave the way to further spread of Ae. albopictus in Europe.  相似文献   
36.
Attention‐deficit hyperactivity disorder (ADHD) is one of the most common neuropsychiatric disorders in children and adolescents with high heritability. Evidence is accumulating that SLC1A3 may play a role in ADHD etiology. Therefore, a two‐stage case‐control study was conducted on 752 cases and 774 controls to explore the role of SLC1A3 in ADHD. Bioinformatic annotations and functional experiments were applied to reveal the potential biological mechanisms. Finally, SLC1A3 rs1049522 showed significant association with ADHD risk in two stages with CA genotype vs AA genotype, odds ratio (OR) = 0.694 (95% confidence interval, CI = 0.570‐0.844) and dominant model, OR = 0.749 (95% CI = 0.621‐0.904) in the combined stage. Besides, rs1049522 was found to be related to ADHD hyperactive/impulsive symptom, and rs1049522‐C showed increased SLC1A3 mRNA expression in the cerebellar cortex. Dual‐luciferase reporter assay further indicated that rs1049522‐C allele enhanced SLC1A3 expression by disrupting the hsa‐miR‐3171 binding site. In conclusion, SLC1A3 variant rs1049522 was implicated in ADHD susceptibility in a Chinese Han population probably by enhancing the SLC1A3 expression in a miRNA‐mediated manner.  相似文献   
37.
As part of the long‐term fusion of evolutionary biology and ecology (Ford, 1964), the field of community genetics has made tremendous progress in describing the impacts of plant genetic variation on community and ecosystem processes. In the “genes‐to‐ecosystems” framework (Whitham et al., 2003), genetically based traits of plant species have ecological consequences, but previous studies have not identified specific plant genes responsible for community phenotypes. The study by Barker et al. (2019) in this issue of Molecular Ecology uses an impressive common garden experiment of trembling aspen (Figure 1) to test for the genetic basis of tree traits that shape the insect community composition. Using a Genome‐Wide Association Study (GWAS), they found that genomic regions associated with phytochemical traits best explain variation in herbivore community composition, and identified specific genes associated with different types of leaf‐modifying herbivores and ants. This is one of the first studies to identify candidate genes underlying the heritable plant traits that explain patterns of insect biodiversity.  相似文献   
38.
39.
The extent to which epistasis affects the genetic architecture of complex traits is difficult to quantify, and identifying variants in natural populations with epistatic interactions is challenging. Previous studies in Drosophila implicated extensive epistasis between variants in genes that affect neural connectivity and contribute to natural variation in olfactory response to benzaldehyde. In this study, we implemented a powerful screen to quantify the extent of epistasis as well as identify candidate interacting variants using 203 inbred wild‐derived lines with sequenced genomes of the Drosophila melanogaster Genetic Reference Panel (DGRP). We crossed the DGRP lines to P[GT1]‐element insertion mutants in Sema‐5c and neuralized (neur), two neurodevelopmental loci which affect olfactory behavior, and to their coisogenic wild‐type control. We observed significant variation in olfactory responses to benzaldehyde among F1 genotypes and for the DGRP line by mutant genotype interactions for both loci, showing extensive nonadditive genetic variation. We performed genome‐wide association analyses to identify the candidate modifier loci. None of these polymorphisms were in or near the focal genes; therefore, epistasis is the cause of the nonadditive genetic variance. Candidate genes could be placed in interaction networks. Several candidate modifiers are associated with neural development. Analyses of mutants of candidate epistatic partners with neur (merry‐go‐round (mgr), prospero (pros), CG10098, Alhambra (Alh) and CG12535) and Sema‐5c (CG42540 and bruchpilot (brp)) showed aberrant olfactory responses compared with coisogenic controls. Thus, integrating genome‐wide analyses of natural variants with mutations at defined genomic locations in a common coisogenic background can unmask specific epistatic modifiers of behavioral phenotypes.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号