首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1080篇
  免费   50篇
  国内免费   6篇
  2024年   3篇
  2023年   17篇
  2022年   20篇
  2021年   30篇
  2020年   33篇
  2019年   106篇
  2018年   78篇
  2017年   89篇
  2016年   55篇
  2015年   26篇
  2014年   121篇
  2013年   132篇
  2012年   30篇
  2011年   41篇
  2010年   27篇
  2009年   38篇
  2008年   42篇
  2007年   30篇
  2006年   27篇
  2005年   17篇
  2004年   13篇
  2003年   23篇
  2002年   15篇
  2001年   14篇
  2000年   14篇
  1999年   16篇
  1998年   13篇
  1997年   12篇
  1996年   9篇
  1995年   2篇
  1994年   4篇
  1992年   4篇
  1991年   8篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1136条查询结果,搜索用时 156 毫秒
141.
The golf swing is a complex full body movement during which the spine and shoulders are highly involved. In order to determine shoulder kinematics during this movement, multibody kinematics optimization (MKO) can be recommended to limit the effect of the soft tissue artifact and to avoid joint dislocations or bone penetration in reconstructed kinematics. Classically, in golf biomechanics research, the shoulder is represented by a 3 degrees-of-freedom model representing the glenohumeral joint. More complex and physiological models are already provided in the scientific literature. Particularly, the model used in this study was a full body model and also described motions of clavicles and scapulae. This study aimed at quantifying the effect of utilizing a more complex and physiological shoulder model when studying the golf swing. Results obtained on 20 golfers showed that a more complex and physiologically-accurate model can more efficiently track experimental markers, which resulted in differences in joint kinematics. Hence, the model with 3 degrees-of-freedom between the humerus and the thorax may be inadequate when combined with MKO and a more physiological model would be beneficial. Finally, results would also be improved through a subject-specific approach for the determination of the segment lengths.  相似文献   
142.
Medial knee osteoarthritis is a debilitating disease. Surgical and conservative interventions are performed to manage its progression via reduction of load on the medial compartment or equivalently its surrogate measure, the external adduction moment. However, some studies have questioned a correlation between the medial load and adduction moment. Using a musculoskeletal model of the lower extremity driven by kinematics–kinetics of asymptomatic subjects at gait midstance, we aim here to quantify the relative effects of changes in the knee adduction angle versus changes in the adduction moment on the joint response and medial/lateral load partitioning. The reference adduction rotation of 1.6° is altered by ±1.5° to 3.1° and 0.1° or the knee reference adduction moment of 17 N m is varied by ±50% to 25.5 N m and 8.5 N m. Quadriceps, hamstrings and tibiofemoral contact forces substantially increased as adduction angle dropped and diminished as it increased. The medial/lateral ratio of contact forces slightly altered by changes in the adduction moment but a larger adduction rotation hugely increased this ratio from 8.8 to a 90 while in contrast a smaller adduction rotation yielded a more uniform distribution. If the aim in an intervention is to diminish the medial contact force and medial/lateral load ratio, a drop of 1.5° in adduction angle is much more effective (causing respectively 12% and 80% decreases) than a reduction of 50% in the adduction moment (causing respectively 4% and 13% decreases). Substantial role of changes in adduction angle is due to the associated alterations in joint nonlinear passive resistance. These findings explain the poor correlation between knee adduction moment and tibiofemoral compartment loading during gait suggesting that the internal load partitioning is dictated by the joint adduction angle.  相似文献   
143.
It has long been held that hip abduction compensates for reduced swing-phase knee flexion angle, especially in those after stroke. However, there are other compensatory motions such as pelvic obliquity (hip hiking) that could also be used to facilitate foot clearance with greater energy efficiency. Our previous work suggested that hip abduction may not be a compensation for reduced knee flexion after stroke. Previous study applied robotic knee flexion assistance in people with post-stroke Stiff-Knee Gait (SKG) during pre-swing, finding increased abduction despite improved knee flexion and toe clearance. Thus, our hypothesis was that hip abduction is not a compensation for reduced knee flexion. We simulated the kinematics of post-stroke SKG on unimpaired individuals with three factors: a knee orthosis to reduce knee flexion, an ankle-foot orthosis commonly worn by those post-stroke, and matching gait speeds. We compared spatiotemporal measures and kinematics between experimental factors within healthy controls and with a previously recorded cohort of people with post-stroke SKG. We focused on frontal plane motions of hip and pelvis as possible compensatory mechanisms. We observed that regardless of gait speed, knee flexion restriction increased pelvic obliquity (2.8°, p < 0.01) compared to unrestricted walking (1.5°, p < 0.01), but similar to post-stroke SKG (3.4°). However, those with post-stroke SKG had greater hip abduction (8.2°) compared to unimpaired individuals with restricted knee flexion (4.2°, p < 0.05). These results show that pelvic obliquity, not hip abduction, compensates for reduced knee flexion angle. Thus, other factors, possibly neural, facilitate exaggerated hip abduction observed in post-stroke SKG.  相似文献   
144.
Gobiid fishes possess a distinctive ventral sucker, formed from fusion of the pelvic fins. This sucker is used to adhere to a wide range of substrates including, in some species, the vertical cliffs of waterfalls that are climbed during upstream migrations. Previous studies of waterfall‐climbing goby species have found that pressure differentials and adhesive forces generated by the sucker increase with positive allometry as fish grow in size, despite isometry or negative allometry of sucker area. To produce such scaling patterns for pressure differential and adhesive force, waterfall‐climbing gobies might exhibit allometry for other muscular or skeletal components of the pelvic sucker that contribute to its adhesive function. In this study, we used anatomical dissections and modeling to evaluate the potential for allometric growth in the cross‐sectional area, effective mechanical advantage (EMA), and force generating capacity of major protractor and retractor muscles of the pelvic sucker (m. protractor ischii and m. retractor ischii) that help to expand the sealed volume of the sucker to produce pressure differentials and adhesive force. We compared patterns for three Hawaiian gobiid species: a nonclimber (Stenogobius hawaiiensis), an ontogenetically limited climber (Awaous guamensis), and a proficient climber (Sicyopterus stimpsoni). Scaling patterns were relatively similar for all three species, typically exhibiting isometric or negatively allometric scaling for the muscles and lever systems examined. Although these scaling patterns do not help to explain the positive allometry of pressure differentials and adhesive force as climbing gobies grow, the best climber among the species we compared, S. stimpsoni, does exhibit the highest calculated estimates of EMA, muscular input force, and output force for pelvic sucker retraction at any body size, potentially facilitating its adhesive ability. J. Morphol. 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
145.
Different studies have analyzed the potential of the off-the-shelf Microsoft Kinect, in its different versions, to estimate spatiotemporal gait parameters as a portable markerless low-cost alternative to laboratory grade systems. However, variability in populations, measures, and methodologies prevents accurate comparison of the results. The objective of this study was to determine and compare the reliability of the existing Kinect-based methods to estimate spatiotemporal gait parameters in healthy and post-stroke adults. Forty-five healthy individuals and thirty-eight stroke survivors participated in this study. Participants walked five meters at a comfortable speed and their spatiotemporal gait parameters were estimated from the data retrieved by a Kinect v2, using the most common methods in the literature, and by visual inspection of the videotaped performance. Errors between both estimations were computed. For both healthy and post-stroke participants, highest accuracy was obtained when using the speed of the ankles to estimate gait speed (3.6–5.5 cm/s), stride length (2.5–5.5 cm), and stride time (about 45 ms), and when using the distance between the sacrum and the ankles and toes to estimate double support time (about 65 ms) and swing time (60–90 ms). Although the accuracy of these methods is limited, these measures could occasionally complement traditional tools.  相似文献   
146.
While differences in joint kinematics and kinetics between control subjects and patients before and after total hip arthroplasty (THA) has often been studied, inter-joint coordination has not been fully characterized. We hypothesized that in patients undergoing THA, inter-joint coordination (i) is different from control subjects before surgery, (ii) changes from pre-operative to post-operative, and (iii) remains different from control subjects after surgery. Seventy-eight subjects underwent gait analysis before and ∼1 year after primary unilateral THA. 109 control subjects were age, sex, and BMI matched to the THA group. We selected a representative trial at each subjects’ self-selected walking speed from a motion analysis data repository. To assess kinematic coordination, we constructed sagittal plane hip-knee angle cyclograms, and calculated total, stance, and swing phase plot area (deg2). To assess kinetic coordination, we calculated the support moment (MS, %wt 1 ht), the time-integral of support moment (MS impulse, %wt 1 ht 1 t), and the relative contribution of each joint to MS impulse (%Hip, %Knee, %Ankle). We used t-tests to compare groups. Total and swing-phase cyclogram area was smaller preoperatively, but improved to control values after THA. Swing-phase area was smaller than control values after THA. MS impulse was larger in THA subjects than controls both before and after surgery. While, the relative contribution of the hip to MS impulse was not different from control values, the contributions of the knee and ankle were smaller. Inter-joint coordination, as measured by hip-knee angle cyclograms and MS impulse, may be used to distinguish differences in gait mechanics between osteoarthritis and THA. Future work focusing on coordination among joints may be needed to fully restore gait function.  相似文献   
147.
Although three-dimensional (3D) asymmetry has been reported in unilateral THA patients during gait, it is not well understood whether asymmetric hip kinematics during gait persist in bilaterally operated THA patients. The purpose of this study was to compare the in vivo 3D kinematics and component placement between bilateral and unilateral THA patients during gait. Eight bilateral and thirty-three unilateral THA patients were evaluated for both hips during treadmill gait using a validated combination of 3D computer tomography-based modeling and dual fluoroscopic imaging system (DFIS). The in vivo 3D kinematics of the unilateral THA group was first assessed. The magnitudes of kinematics and component placement difference between implanted hips in the bilateral THA group and between the implanted and non-implanted hips in the unilateral THA group were compared. The study results showed asymmetric gait kinematics in the unilateral THA group. Although the magnitude of kinematics differences between sides for both the bilateral and unilateral THA groups did not change significantly for hip rotations (p > 0.05), the bilaterally operated THA group has significantly lower magnitude of hip gait translation difference. Significant reduction in the magnitude of the acetabular cup adduction, stem adduction, and combine hip anteversion and adduction difference was observed in the bilateral THA group (p < 0.05). Our findings demonstrated that despite significant improvements of component placement and reduced magnitude of hip gait translation difference between implanted hips in the bilateral THA group, asymmetric hip kinematic rotations persisted in patients with bilateral THA during gait.  相似文献   
148.
The relations between kinematic abnormalities and post traumatic osteoarthritis have not yet been clearly elucidated. This study was conducted to determine the finite helical axes parameters and the tibiofemoral translation vector in the knee joints of two surgically induced injury sheep models: anterior cruciate ligament and medial collateral ligament transection (ACL/MCL Tx) (n = 5) and lateral meniscectomy (n = 5). We hypothesized that morphological damage in the experimental joints would be correlated to alterations in these kinematic variables. There was no strong evidence that morphological damage to the joints 20 weeks post ACL/MCL transection or meniscectomy was correlated with alterations in the finite helical axes variables. Nevertheless, significant correlations were found between the morphological damage to the joints and the magnitude of the change in the translation vectors after ACL/MCL transection (significant correlations (p = 0.005) during stance and trends (p < 0.1) at all points analyzed during swing). It can be concluded that: (1) osteoarthritic-like morphological damage after ACL/MCL transection is more critically correlated to the absolute tibiofemoral translational change and (2) alterations in analyzed kinematic variables cannot solely define osteoarthritis risk after meniscal injuries. From a clinical perspective, our results suggest that the magnitude of the change in the translation vector, which is independent of the coordinate system and combines the effects of the three translational degrees of freedom, i.e. medial–lateral, anterior-posterior and inferior-superior, would be an osteoarthritis risk factor after ligament injury, and requires validation in humans.  相似文献   
149.
Squats are a common lower extremity task used in strength and conditioning, balance training, and rehabilitation. It is important to understand how slight alterations in lower extremity kinematics during a squat affect the internal joint loading of the knee. This study directly quantified tibiofemoral contact throughout the in vitro simulation of a bodyweight back squat performed two ways: a heel squat (knees in line with toes) and a toe squat (knees anterior to the toes) at peak knee flexion. Three cadaveric right lower extremities were instrumented and positioned into the University of Texas Joint Load Simulator. Kinematics, kinetics, and predicted muscle forces from a 20-year-old athletic male performing the two back squats were used as inputs for the in vitro simulations. The quantified tibiofemoral contact area, peak pressure, net force, and center of pressure location were significantly different between squat types (p > 0.05). Net contact area on the tibial plateau at peak knee flexion was significantly larger in the heel versus toe squat (599 ± 80 mm2 vs. 469 ± 125 mm2; p < 0.05). Peak lateral pressure was significantly higher in the heel versus toe squat (2.73 ± 0.54 MPa vs. 0.87 ± 0.56 MPa; p < 0.05). Results suggest the heel squat generates an even load distribution, which is less likely to affect joint degeneration. Future in vitro simulations should quantify the effects lower extremity kinematics, kinetics, and individual muscle forces have on tibiofemoral contact parameters during common athletic tasks.  相似文献   
150.
A muscle model that uses a modified Langevin equation with actomyosin potentials was used to describe the residual force enhancement after active stretching. Considering that the new model uses cross-bridge theory to describe the residual force enhancement, it is different from other models that use passive stretching elements. Residual force enhancement was simulated using a half sarcomere comprising 100 myosin molecules. In this paper, impulse is defined as the integral of an excess force from the steady isometric force over the time interval for which a stretch is applied. The impulse was calculated from the force response due to fast and slow muscle stretches to demonstrate the viscoelastic property of the cross-bridges. A cross-bridge mechanism was proposed as a way to describe the residual force enhancement on the basis of the impulse results with reference to the compliance of the actin filament. It was assumed that the period of the actin potential increased by 0.5% and the amplitude of the potential decreased by 0.5% when the half sarcomere was stretched by 10%. The residual force enhancement after 21.0% sarcomere stretching was 6.9% of the maximum isometric force of the muscle; this value was due to the increase in the number of cross-bridges.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号