首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1095篇
  免费   72篇
  国内免费   21篇
  2023年   8篇
  2022年   19篇
  2021年   24篇
  2020年   24篇
  2019年   31篇
  2018年   28篇
  2017年   19篇
  2016年   36篇
  2015年   53篇
  2014年   48篇
  2013年   60篇
  2012年   40篇
  2011年   65篇
  2010年   38篇
  2009年   49篇
  2008年   51篇
  2007年   51篇
  2006年   49篇
  2005年   45篇
  2004年   47篇
  2003年   34篇
  2002年   32篇
  2001年   17篇
  2000年   20篇
  1999年   21篇
  1998年   17篇
  1997年   12篇
  1996年   8篇
  1995年   8篇
  1994年   6篇
  1993年   18篇
  1992年   11篇
  1991年   7篇
  1990年   9篇
  1989年   14篇
  1988年   12篇
  1987年   10篇
  1986年   9篇
  1985年   9篇
  1984年   29篇
  1983年   22篇
  1982年   20篇
  1981年   18篇
  1980年   11篇
  1979年   6篇
  1978年   4篇
  1977年   5篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
排序方式: 共有1188条查询结果,搜索用时 93 毫秒
81.
The EF-hand calcium-binding protein S100B has been shown to interact in vitro in a calcium-sensitive manner with many substrates. These potential S100B target proteins have been screened for the preservation of a previously identified consensus sequence across species. The results were compared to known structural and in vitro properties of the proteins to rationalize choices for potential binding partners. Our approach uncovered four oligomeric proteins tubulin (alpha and beta), glial fibrillary acidic protein (GFAP), desmin, and vimentin that have conserved regions matching the consensus sequence. In the type III intermediate filament proteins (GFAP, vimentin, and desmin), this region corresponds to a portion of a coiled-coil (helix 2A), the structural element responsible for their assembly. In tubulin, the sequence matches correspond to regions of alpha and beta tubulin found at the alpha beta tubulin interface. In both cases, these consensus sequence matches provide a logical explanation for in vitro observations that S100B is able to inhibit oligomerization of these proteins.  相似文献   
82.
Long term potentiation (LTP) was induced in the CA1 region of rat hippocampal slices by tetanization of the Schaffer collaterals. Local pretreatment of CA1 with serum of rabbits immunized against S-100 prevented the potentiation. However, treatment of the slices with a membrane permeant cAMP analogue, such as 8-Br-cAMP, could protect against the blocking effect of anti S-100 serum. We suggest that in the rat endogenous S-100b is involved in transduction mechanisms during LTP induction, via its ability to stimulate adenylate cyclase. Possible mechanisms of this action are discussed.  相似文献   
83.
S100B is the major low-affinity Ca(2+)-binding protein in astrocytes. In order to study the role of S100B in the maintenance of Ca(2+) homeostasis, we generated S100B null mice by a targeted inactivation of the S100B gene. Absence of S100B expression was demonstrated by Northern and Western blotting for S100B mRNA and protein, respectively, and immunoperoxidase staining of sections of various brain regions. S100B null mice were viable, fertile, and exhibited no overt behavioral abnormalities up to 12 months of age. On the basis of light microscopy and immunohistochemical staining, there were no discernable alterations in the distribution and morphology of astrocytes or neurons in sections of adult brains of these mice. Astrocytes in cerebellar cultures derived from 6-day-old S100B null mice exhibited enhanced Ca(2+) transients in response to treatment with KCl or caffeine. On the other hand, granule neurons, in the same cultures, exhibited normal Ca(2+) transients in response to treatment with KCl, caffeine, or N-methyl-d-aspartate. These results demonstrate a specific decrease in Ca(2+)-handling capacity in astrocytes derived from S100B null mice and suggest that S100B plays a role in the maintenance of Ca(2+) homeostasis in astrocytes.  相似文献   
84.
Mechanical activity of cells and the stress imposed on them by extracellular environment is a constant source of injury to the plasma membrane (PM). In invasive tumor cells, increased motility together with the harsh environment of the tumor stroma further increases the risk of PM injury. The impact of these stresses on tumor cell plasma membrane and mechanism by which tumor cells repair the PM damage are poorly understood. Ca2+ entry through the injured PM initiates repair of the PM. Depending on the cell type, different organelles and proteins respond to this Ca2+ entry and facilitate repair of the damaged plasma membrane. We recently identified that proteins expressed in various metastatic cancers including Ca2+-binding EF hand protein S100A11 and its binding partner annexin A2 are used by tumor cells for plasma membrane repair (PMR). Here we will discuss the involvement of S100, annexin proteins and their regulation of actin cytoskeleton, leading to PMR. Additionally, we will show that another S100 member – S100A4 accumulates at the injured PM. These findings reveal a new role for the S100 and annexin protein up regulation in metastatic cancers and identify these proteins and PMR as targets for treating metastatic cancers.  相似文献   
85.
Alzheimer’s disease is a neurodegenerative disease affecting the aging population. A key neuropathological feature of the disease is the over-production of amyloid-beta and the deposition of amyloid-beta plaques in brain regions of the afflicted individuals. Throughout the years scientists have generated numerous Alzheimer’s disease mouse models that attempt to replicate the amyloid-beta pathology. Unfortunately, the mouse models only selectively mimic the disease features. Neuronal death, a prominent effect in the brains of Alzheimer’s disease patients, is noticeably lacking in these mice. Hence, we and others have employed a method of directly infusing soluble oligomeric species of amyloid-beta - forms of amyloid-beta that have been proven to be most toxic to neurons - stereotaxically into the brain. In this report we utilize male C57BL/6J mice to document this surgical technique of increasing amyloid-beta levels in a select brain region. The infusion target is the dentate gyrus of the hippocampus because this brain structure, along with the basal forebrain that is connected by the cholinergic circuit, represents one of the areas of degeneration in the disease. The results of elevating amyloid-beta in the dentate gyrus via stereotaxic infusion reveal increases in neuron loss in the dentate gyrus within 1 week, while there is a concomitant increase in cell death and cholinergic neuron loss in the vertical limb of the diagonal band of Broca of the basal forebrain. These effects are observed up to 2 weeks. Our data suggests that the current amyloid-beta infusion model provides an alternative mouse model to address region specific neuron death in a short-term basis. The advantage of this model is that amyloid-beta can be elevated in a spatial and temporal manner.  相似文献   
86.
The S100P protein has been known to mediate cell proliferation by binding the receptor for advanced glycation end products (RAGE) to activate signaling pathways, such as the extracellular regulated kinase (ERK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. S100P/RAGE signaling is involved in a variety of diseases, such as cancer, metastasis, and diabetes. Cromolyn is an anti-allergy drug that binds S100P to block the interaction between S100P and RAGE. In the present study, we characterized the properties of the binding between cromolyn and calcium-bound S100P using various biophysical techniques. The binding affinity for S100P and cromolyn was measured to be in the millimolar range by fluorescence spectroscopy. NMR-HSQC titration experiments and HADDOCK modeling was employed to determine the spatial structure of the proposed heterotetramer model of the S100P–cromolyn complex. Additional MD simulation results revealed the important properties in the complex stability and conformational flexibility of the S100P–cromolyn complex. This proposed model has provided an understanding of the molecular level interactions of S100P–cromolyn complex.  相似文献   
87.
Much of the difficulty in elucidating the precise function of S100 protein family has been attributed to functional redundancy and compensation by its conserved family members. In this study, we showed that seven S100 family members were almost totally undetectable in HepG2.2.15 cells, while all of them were highly expressed in its parental HepG2 cells. Re-expression of S100 proteins in HepG2.2.15 cells can partially rescue their defects in cell protrusion and migration through the regulation of cytoskeletons and adhesions. Thus, HepG2.2.15 can serve as a useful model for studying cell protrusion and migration regulated by S100 proteins.  相似文献   
88.
ACAT2, the enzyme responsible for the formation of cholesteryl esters incorporated into apolipoprotein B-containing lipoproteins by the small intestine and liver, forms predominantly cholesteryl oleate from acyl-CoA and free cholesterol. The accumulation of cholesteryl oleate in plasma lipoproteins has been found to be predictive of atherosclerosis. Accordingly, a method was developed in which fatty acyl-CoA subspecies could be extracted from mouse liver and quantified. Analyses were performed on liver tissue from mice fed one of four diets enriched with one particular type of dietary fatty acid: saturated, monounsaturated, n-3 polyunsaturated, or n-6 polyunsaturated. We found that the hepatic fatty acyl-CoA pools reflected the fatty acid composition of the diet fed. The highest percentage of fatty acyl-CoAs across all diet groups was in monoacyl-CoAs, and values were 36% and 46% for the n-3 and n-6 polyunsaturated diet groups and 55% and 62% in the saturated and monounsaturated diet groups, respectively. The percentage of hepatic acyl-CoA as oleoyl-CoA was also highly correlated to liver cholesteryl ester, plasma cholesterol, LDL molecular weight, and atherosclerosis extent. These data suggest that replacing monounsaturated with polyunsaturated fat can benefit coronary heart disease by reducing the availability of oleoyl-CoA in the substrate pool of hepatic ACAT2, thereby reducing cholesteryl oleate secretion and accumulation in plasma lipoproteins.  相似文献   
89.
S100B protein is found in brain, has been used as a marker for brain injury and is neurotrophic. Using a well-characterized in vitro model of brain cell trauma, we have previously shown that strain injury causes S100B release from neonatal rat neuronal plus glial cultures and that exogenous S100B reduces delayed post-traumatic neuronal damage even when given at 6 or 24 h post-trauma. The purpose of the current studies was to measure post-traumatic S100B release by specific brain cell types and to examine the effect of an antibody to S100 on post-traumatic delayed (48 h) neuronal injury and the protective effect of exogenous S100B. Neonatal rat cortical cells grown on a deformable elastic membrane were subjected to a strain (stretch) injury produced by a 50 ms displacement of the membrane. S100B was measured with an ELISA kit. Trauma released S100B from pure cultures of astrocytes, microglia, and neurons. Anti-S100 reduced released S100B to below detectable levels, increased delayed neuronal injury in traumatized cells and negated the protective effect of exogenous S100B on injured cells. Heat denatured anti-S100 did not exacerbate injury. These studies provide further evidence for a protective role for S100B following neuronal trauma.  相似文献   
90.
【目的】通过研究三唑锡亚致死浓度LC10、LC20及致死中浓度LC50对土耳其斯坦叶螨Tetranychus turkestani运动速率的影响,为杀螨剂对土耳其斯坦叶螨在行为学方面影响提供科学依据,并将此作为评价药剂的作用机理的理论依据。【方法】采用叶片浸渍法,明确致死中浓度和亚致死浓度,使用LC-100昆虫行为记录仪对土耳其斯坦叶螨在受到三唑锡亚致死浓度LC10、LC20和LC50刺激下其运动速率进行记录,观察其运动速率在三唑锡不同浓度、不同天数、不同时间段的变化规律。【结果】在三唑锡不同亚致死浓度作用下,第1天到第3天的10:00―12:00,其运动速率比对照低,从第3天10:00―12:00期间到第5天20:00―22:00期间,其运动速率与对照没有显著性差异。在相同亚致死浓度作用下,第1天10:00―12:00期间,土耳其斯坦叶螨的运动速率显著高于15:00―17:00期间和20:00―22:00期间,而在第3天和第5天的3个时间段,对土耳其斯坦叶螨的运动速率没有显著影响。当作用的时段不同时,LC10第1天10:00―12:00显著高于第3天和第5天,而LC20、LC50在10:00―12:00没有显著性差异。三种浓度的第1天15:00―17:00显著低于第3天和第5天。第3及第5天20:00―22:00没有显著性差异。【结论】总体来看,3唑锡亚不同致死浓度对土耳其斯坦叶螨的运动速率影响受浓度、时间影响,浓度越高土耳其斯坦叶螨运动速率越慢;随着时间延长,农药亚致死浓度对土耳其斯坦叶螨的运动速率基本没有影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号