首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2055篇
  免费   62篇
  国内免费   20篇
  2137篇
  2023年   22篇
  2022年   52篇
  2021年   36篇
  2020年   29篇
  2019年   99篇
  2018年   96篇
  2017年   65篇
  2016年   32篇
  2015年   73篇
  2014年   155篇
  2013年   130篇
  2012年   121篇
  2011年   112篇
  2010年   60篇
  2009年   64篇
  2008年   72篇
  2007年   86篇
  2006年   53篇
  2005年   38篇
  2004年   60篇
  2003年   43篇
  2002年   40篇
  2001年   18篇
  2000年   14篇
  1999年   15篇
  1998年   12篇
  1997年   5篇
  1996年   7篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   6篇
  1988年   2篇
  1986年   1篇
  1985年   18篇
  1984年   82篇
  1983年   71篇
  1982年   63篇
  1981年   53篇
  1980年   39篇
  1979年   38篇
  1978年   22篇
  1977年   39篇
  1976年   22篇
  1975年   20篇
  1974年   13篇
  1973年   13篇
排序方式: 共有2137条查询结果,搜索用时 0 毫秒
141.
142.
Choi SC  Han JK 《The EMBO journal》2005,24(5):985-996
The Wnt/beta-catenin signaling pathway is critical for the establishment of organizer and embryonic body axis in Xenopus development. Here, we present evidence that Xenopus Rap2, a member of Ras GTPase family, is implicated in Wnt/beta-catenin signaling during the dorsoventral axis specification. Ectopic expression of XRap2 can lead to neural induction without mesoderm differentiation. XRap2 dorsalizes ventral tissues, inducing axis duplication, organizer-specific gene expression and convergent extension movements. Knockdown of XRap2 causes ventralized phenotypes including shortened body axis and defective dorsoanterior patterning, which are associated with aberrant Wnt signaling. In line with this, XRap2 depletion inhibits beta-catenin stabilization and the induction of ectopic dorsal axis and Wnt-responsive genes caused by XWnt8, Dsh or beta-catenin, but has no effect on the signaling activities of a stabilized beta-catenin. Its knockdown also disrupts the vesicular localization of Dsh, thereby inhibiting Dsh-mediated beta-catenin stabilization and the membrane recruitment and phosphorylation of Dsh by frizzled signaling. Taking together, we suggest that XRap2 is involved in Wnt/beta-catenin signaling as a modulator of the subcellular localization of Dsh.  相似文献   
143.
Dovas A  Cox D 《Cellular signalling》2011,23(8):1225-1234
Podosomes are ventral adhesion structures prominent in cells of the myeloid lineage. A common aspect of these cells is that they are highly motile and must to traverse multiple tissue barriers in order to perform their functions. Recently podosomes have gathered attention from researchers as important cellular structures that can influence cell adhesion, motility and matrix remodeling. Adhesive and soluble ligands act via transmembrane receptors and propagate signals to the leukocyte cytoskeleton via small G proteins of the Rho family, tyrosine kinases and scaffold proteins and are able to induce podosome formation and rearrangements. Manipulation of the signals that regulate podosome formation and dynamics can therefore be a strategy to interfere with leukocyte functions in a multitude of pathological settings, such as infections, atherosclerosis and arthritis. Here, we review the major signaling molecules that act in the formation and regulation of podosomes.  相似文献   
144.
The motility rules for cellular movement proposed earlier by Goel &; Rogers for engulfment of two or more intact embryonic tissues have been used to simulate on a computer the phenomena of cell-sorting, migration of individual cells through a mass of cells and contact inhibition of overlapping. These simulations in the most part are found to be consistent with the observations with real cells.  相似文献   
145.
We propose an analytical model, which can simultaneously depict many fundamental characteristics of the immunogenicity of various vaccines. This model, the Immune Response (IR) profile, conveniently expresses the mathematical relation between pre- and post-vaccination titers. A vaccine's IR profile is antigen-specific, dose-dependent and post-vaccination interval-dependent. The maximal capability for serological response to a vaccine can be determined using this model irrespective of the dose administered, the post-vaccination assay interval, or the live or killed state of the vaccine. The IR profile obtained from analysis of booster vaccine responses in a limited number of seropositive study subjects can be used to predict maximal antibody titers which are expected after vaccination and can predict the geometric mean post-vaccination antibody titer of a cohort of subjects undergoing primary immunization. Using this model, it is anticipated that the immunoregulation implied by the IR profile may also prove to be correlated with cellular subpopulations and idiotypic antibody functions. Although derived from influenza vaccines analyses, the model successfully describes immune response characteristics following natural infection with malaria and following diphtheria and rubella vaccine administration.  相似文献   
146.
147.
148.

Background

Campylobacter jejuni is an important food-borne and zoonotic pathogen with a worldwide distribution. Humans and chickens are hosts of this pathogen. At present, there is no ideal vaccine for controlling human campylobacteriosis or the carriage of C. jejuni by chickens. Bacterial in vivo-induced antigens are useful as potential vaccine candidates and biomarkers of virulence.

Methods

In this study, we developed a novel systematic immunoproteomics approach to identify in vivo-induced antigens among the total cell proteins of C. jejuni using pre-adsorbed sera from patients infected with C. jejuni.

Results

Overall, 14 immunoreactive spots were probed on a PVDF membrane using pre-adsorbed human sera against C. jejuni. Then, we excised these protein spots from a duplicate gel and identified using MALDI–TOF MS. In total, 14 in vivo-induced antigens were identified using PMF and BLAST analysis. The identified proteins include CadF (CadF-1 and CadF-2), CheW, TufB, DnaK, MetK, LpxB, HslU, DmsA, PorA, ProS, CJBH_0976, CSU_0396 and hypothetical protein cje135_05017. Real-time RT-PCR was performed on 9 genes to compare their expression levels in vivo and in vitro. The data showed that 8 of the 9 analyzed genes were significantly upregulated in vivo relative to in vitro.

Conclusion

We successfully developed a novel immunoproteomics method for identifying in vivo-induced Campylobacter jejuni antigens by using pre-adsorbed sera from infected patients.

General significance

This new analysis method may prove to be useful for identifying in vivo-induced antigens within any host infected by bacteria and will contribute to the development of new subunit vaccines.  相似文献   
149.
Auxin and abscisic acid (ABA) modulate numerous aspects of plant development together, mostly in opposite directions, suggesting that extensive crosstalk occurs between the signalling pathways of the two hormones. However, little is known about the nature of this crosstalk. We demonstrate that ROP‐interactive CRIB motif‐containing protein 1 (RIC1) is involved in the interaction between auxin‐ and ABA‐regulated root growth and lateral root formation. RIC1 expression is highly induced by both hormones, and expressed in the roots of young seedlings. Whereas auxin‐responsive gene induction and the effect of auxin on root growth and lateral root formation were suppressed in the ric1 knockout, ABA‐responsive gene induction and the effect of ABA on seed germination, root growth and lateral root formation were potentiated. Thus, RIC1 positively regulates auxin responses, but negatively regulates ABA responses. Together, our results suggest that RIC1 is a component of the intricate signalling network that underlies auxin and ABA crosstalk.  相似文献   
150.
Esophageal carcinoma, with a increasing incidence, is one of the most aggressive carcinomas in gastrointestinal tract. Epidemiologic studies demonstrate an association of oral pathogens with multiple diseases, including rheumatoid arthritis, cardiovascular diseases, diabetes, and gastrointestinal malignancies. Nevertheless, a causal relationship between oral pathogens and esophageal squamous cell carcinoma (ESCC) has not been elucidated. Here, we found that Porphyromonas was significantly enriched in the saliva of patients with ESCC, compared with that in normal human. In vitro studies showed that Porphyromonas gingivalis (P. gingivalis) promoted the proliferation and motility of ESCC cells, as evidenced by up regulated expression of key molecules implicated in NF-κB signaling pathway. These findings, for the first time, demonstrated a role of oral pathogens in inducing ESCC tumorigenesis and metastasis, which might involve regulation of NF-κB signaling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号