首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   4篇
  国内免费   1篇
  2019年   5篇
  2018年   14篇
  2017年   3篇
  2014年   14篇
  2013年   30篇
  2012年   10篇
  2011年   36篇
  2010年   11篇
  2009年   14篇
  2008年   10篇
  2007年   11篇
  2006年   8篇
  2005年   11篇
  2004年   3篇
  2003年   7篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   4篇
  1983年   3篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
排序方式: 共有218条查询结果,搜索用时 140 毫秒
121.
The cellular redox state is an important determinant of metal phytotoxicity. In this study we investigated the influence of cadmium (Cd) and copper (Cu) stress on the cellular redox balance in relation to oxidative signalling and damage in Arabidopsis thaliana. Both metals were easily taken up by the roots, but the translocation to the aboveground parts was restricted to Cd stress. In the roots, Cu directly induced an oxidative burst, whereas enzymatic ROS (reactive oxygen species) production via NADPH oxidases seems important in oxidative stress caused by Cd. Furthermore, in the roots, the glutathione metabolism plays a crucial role in controlling the gene regulation of the antioxidative defence mechanism under Cd stress. Metal-specific alterations were also noticed with regard to the microRNA regulation of CuZnSOD gene expression in both roots and leaves. The appearance of lipid peroxidation is dual: it can be an indication of oxidative damage as well as an indication of oxidative signalling as lipoxygenases are induced after metal exposure and are initial enzymes in oxylipin biosynthesis.In conclusion, the metal-induced cellular redox imbalance is strongly dependent on the chemical properties of the metal and the plant organ considered. The stress intensity determines its involvement in downstream responses in relation to oxidative damage or signalling.  相似文献   
122.
Abstract

The activity of glutathione reductase with an unnatural analog of oxidized glutathione was explored. The analog, L-γ-glutamyl-2-methyl-L-cysteinyl-glycine disulfide, places an additional methyl group on the alpha position of each of the central cysteine residues, which significantly increases steric bulk near the disulfide bond. Glutathione reductase was completely unable to catalyze the sulfur–sulfur bond reduction of the analog. Additionally, enzyme kinetics experiments indicated that the analog acts as a competitive inhibitor of glutathione reductase. Computational studies confirm that the methylated analog fits within the active site of the enzyme but its disulphide bond geometry is altered, preventing reduction by the enzyme. The substitution of (R)-2-methylcysteine in place of natural (R)-cysteine in peptides constitutes a new strategy for stabilizing disulphide bonds from enzyme-catalyzed degradation.  相似文献   
123.
Ribosomal proteins assist the assembly and increase the stability of ribosomal RNA, without requiring ATP for their action. Some ribosomal proteins are also known to have essential functions outside the ribosome, i.e. promiscuity of functions that appears to correlate with their structural disorder. Here we addressed if certain ribosomal proteins with RNA chaperone activity and with a significant level of disorder also have protein-chaperone activity in vitro. Four proteins of the large subunit of Escherichia coli ribosome, L15, L16, L18 and L19 have been tested in three chaperone assays, in which all of them exhibited potent chaperone activity, commensurable with that of heat shock protein 90 kDa. These observations highlight possible novel aspects of the promiscuous functions of ribosomal proteins outside of the ribosome.  相似文献   
124.
Yeast glutaredoxins Grx1 and Grx2 catalyze the reduction of both inter- and intra-molecular disulfide bonds using glutathione (GSH) as the electron donor. Although sharing the same dithiolic CPYC active site and a sequence identity of 64%, they have been proved to play different roles during oxidative stress and to possess different glutathione-disulfide reductase activities. To address the structural basis of these differences, we solved the crystal structures of Grx2 in oxidized and reduced forms, at 2.10 Å and 1.50 Å, respectively. With the Grx1 structures we previously reported, comparative structural analyses revealed that Grx1 and Grx2 share a similar GSH binding site, except for a single residue substitution from Asp89 in Grx1 to Ser123 in Grx2. Site-directed mutagenesis in combination with activity assays further proved this single residue variation is critical for the different activities of yeast Grx1 and Grx2.  相似文献   
125.
Recently, residual fungicides are generally recognized as relevant sources of aquatic environmental pollutants. However, the toxicological effects of these contaminants have not been adequately researched. In this study, the chronic effect of PCZ, a triazole-containing fungicide commonly present in aquatic environment, on GSH-related antioxidant system and oxidative stress indices of rainbow trout (Oncorhynchus mykiss) were investigated. Fish were exposed at sub-lethal concentrations of PCZ (0.2, 50 and 500 μg/L) for 7, 20 and 30 days. GSH levels and GSH-related enzyme activities, including GPx, GR and GST, were quantified in three tissues—liver, gill and muscle. The levels of LPO and CP were also measured as makers of oxidative damage. In addition, the correlations of the measured parameters in various tissues were evaluated by using PCA. The results of this study indicate that chronic exposure of PCZ has resulted in different responses in various tissues and the gill was the most sensitive tissue; however, before these parameters are used as potential biomarkers for monitoring residual fungicides in aquatic environment, more detailed experiments in laboratory need to be performed in the future.  相似文献   
126.
The formation of disulfide bonds between cysteine residues is a rate-limiting step in protein folding. To control this oxidative process, different organisms have developed different systems. In bacteria, disulfide bond formation is assisted by the Dsb protein family; in eukarya, disulfide bond formation and rearrangement are catalyzed by PDI. In thermophilic organisms, a potential key role in disulfide bond formation has recently been ascribed to a new cytosolic Protein Disulphide Oxidoreductase family whose members have a molecular mass of about 26 kDa and are characterized by two thioredoxin folds comprising a CXXC active site motif each. Here we report on the functional and structural characterization of ApPDO, a new member of this family, which was isolated from the archaeon Aeropyrum pernix K1. Functional studies have revealed that ApPDO can catalyze the reduction, oxidation and isomerization of disulfide bridges. Structural studies have shown that this protein has two CXXC active sites with fairly similar geometrical parameters typical of a stable conformation. Finally, a theoretical calculation of the cysteine pK(a) values has suggested that the two active sites have similar functional properties and each of them can impart activity to the enzyme. Our results are evidence of functional similarity between the members of the Protein Disulphide Oxidoreductase family and the eukaryotic enzyme PDI. However, as the different three-dimensional features of these two biological systems strongly suggest significantly different mechanisms of action, further experimental studies will be needed to make clear how different three-dimensional structures can result in systems with similar functional behavior.  相似文献   
127.
We previously showed that naproxen induced the oxidative stress in the liver microsomes and the isolated hepatocytes of rats. In this study, the in situ effect of naproxen on the rat liver tissue was investigated, using the isolated perfused liver from the view-point of the naproxen-induced hepatotoxicity. The leakage of glutamic-oxaloacetic transaminase (GOT) from the perfused liver and appearance of thiobarbituric acid reactive substances (TBARS) in the perfusate increased with the progress of perfusion after a lag time of about 1h. The naproxen-perfusion of the liver decreased the biliary excretion of glutathione (GSH) and oxidized glutathione, glutathione disulfide (GSSG) prior to TBARS production and GOT leakage. GSSG content in the naproxen-perfused liver was significantly higher than in the control. TBARS appeared in the perfusate of the naproxen-perfused liver for 30 min, but not in the control. The biliary excretion clearance (CL(bile)) of indocyanine green (ICG), a reagent for testing the liver function, in the liver perfused with naproxen decreased to a half of that in the liver perfused without naproxen. Thus, the naproxen-induced oxidative stress in the liver was shown to affect the physiological function of liver through the impairment of biliary excretion, which is recognized as a detoxification system.  相似文献   
128.
Atherosclerosis, the main cause of cardiovascular disease (CD), is a chronic inflammatory condition associated with an overproduction of oxidant species, namely peroxynitrite, which is a powerful oxidant that reacts directly with all biomolecules. Glutathione is an efficient scavenger of peroxynitrite, so, modulation of glutathione synthesis may provide a strategy to selectively protect cells from this oxidant. Here, we investigated the ability of resveratrol, a component of red wine, to prevent peroxynitrite-mediated endothelial cells toxicity and the underlying mechanism. Bovine aortic endothelial cells (BAEC) in primary cultures were treated with authentic peroxynitrite and the cell viability and intracellular glutathione contents were assessed. Our results demonstrate that a long pre-incubation (14 h) of BAEC with resveratrol (1-50 microM) leads to the endothelial cells rescue from injury triggered by authentic peroxynitrite by a mechanism of up-regulation of the intracellular GSH content, for the highest resveratrol concentration tested. Considering the importance of GSH in regulation of cell life, this capacity of resveratrol provides a new mechanism for its cardioprotective effects and may contribute to the development of novel therapeutic strategies.  相似文献   
129.
Invasion of the Mediterranean Sea by the two world-wide famous exotic algae species, Caulerpa taxifolia and Caulerpa racemosa, is still a problem and has adverse effects on the Mediterranean sublittoral ecosystem. Biological control studies revealed that the two native Sacoglossans, Oxynoe olivacea and Lobiger serradifalci, may have an effect on the expansion of invasive Caulerpa spp. in the Mediterranean. In the framework of this study, antioxidant enzyme activities, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), lipid peroxidation (LPO) and oxidized glutathione (GSSG) levels, as oxidative stress markers in L. serradifalci and O. olivacea were determined at two different temperature conditions (20 and 27 °C). In both species, SOD, CAT and GSH-Px activities were found to be positively correlated with temperature. The SOD activities in L. serradifalci were higher than those in O. olivacea at both temperatures, whereas the CAT and GSH-Px activities were significantly (p<0.05) higher in O. olivacea, compared to L. serradifalci. As expected, both species showed decreased LPO levels at 27 °C compared to 20 °C. GSSG level at 27 °C in O.olivacea was significantly (p<0.05) higher than that of 20 °C. On the other hand, no statistical (p>0.05) difference in L.serradifalci existed between GSSG levels at two temperatures. But, despite the variations in the antioxidant enzyme activities, there was no significant difference in LPO levels between the species, suggesting that the oxidative consequences of a given environmental condition may vary among different species. Inasmuch as the GSSG levels were in accordance with antioxidant enzyme activities, GSH might have acted as a cofactor of GSH-Px and an individual antioxidant in these sea slugs.  相似文献   
130.
Sahu D  Debnath P  Takayama Y  Iwahara J 《FEBS letters》2008,582(29):3973-3978
The High Mobility Group B1 (HMGB1) protein plays important roles in both intracellular (reductive) and extracellular (oxidative) environments. We have carried out quantitative investigations of the redox chemistry involving Cys22 and Cys44 of the HMGB1 A-domain, which form an intramolecular disulfide bond. Using NMR spectroscopy, we analyzed the real-time kinetics of the redox reactions for the A-domain in glutathione and thioredoxin systems, and also determined the standard redox potential. Thermodynamic experiments showed that the Cys22-Cys44 disulfide bond stabilizes the folded state of the protein. These data suggest that the oxidized HMGB1 may accumulate even in cells under oxidative stress.

Structured summary

MINT-6795963:
txn (uniprotkb:P10599) and HMGB1 (uniprotkb:P09429) bind (MI:0408) by nuclear magnetic resonance (MI:0077)
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号